A GROUND-MOTION MODEL USING NGA-SUBDUCTION DATABASE

Y. Bozorgnia1,2, K.W. Campbell3, N. Gregor4, N. Kuehn2

ABSTRACT

This paper provides an overview of new ground-motion models (GMMs) developed by the authors (listed alphabetically) applicable to worldwide Interface and Intraslab subduction events. We used a comprehensive database developed under the NGA-Sub research program to develop two GMMs for subduction events: (a) a global “base” model that does not account for regionalization and (b) a model that accounts for different ground-motion scaling characteristics for selected regions. The GMMs are appropriate for predicting PGA, PGV, and 5%-damped pseudo-spectral acceleration over a period range of 0.01 to 10 sec.

1 Dept. of Civil \& Environmental Engineering, University of California, Los Angeles CA 90095 (yousef.bozorgnia@ucla.edu)
2 Dept. of Civil \& Environmental Engineering, University of California, Berkeley CA 94720
3 CoreLogic, Inc., Oakland, CA
4 Consultant, Oakland, CA 94602

A Ground-Motion Model Using NGA-Subduction Database

Y. Bozorgnia1,2, K.W. Campbell3, N. Gregor4, N. Kuehn2

\textbf{ABSTRACT}

This paper provides an overview of a new ground-motion models (GMMs) developed by the authors (listed alphabetically) applicable to worldwide Interface and Intraslab subduction events. We used a comprehensive database developed under the NGA-Sub research program to develop two GMMs for subduction events: (a) a global “base” model that does not account for regionalization and (b) a model that accounts for different ground-motion scaling characteristics for selected regions. The GMMs are appropriate for predicting PGA, PGV, and 5%-damped pseudo-spectral acceleration over a period range of 0.01 to 10 sec.

\textbf{Introduction}

The Next Generation Attenuation (NGA) projects are a series of research initiatives to develop databases and ground-motion models (GMMs) for various tectonic regimes employing the latest available data and state-of-the-art methodologies and knowledge in seismic hazard. The latest in this research program is NGA-Sub with a focus on subduction events. In this program, a comprehensive database of ground motions recorded in worldwide subduction events has been developed. The database includes over 214,000 individual ground-motion components recorded during worldwide Interface and Intraslab subduction events (Kishida et al., 2018 \cite{1}). The authors of this paper have selected a subset of the database for the analysis and development of a GMM as presented in the following sections.

\textbf{Selected Database}

Following an investigation of all the data in the database, we selected a subset of data that we believed to be appropriate for the development of our GMM. Our selection criteria are as follows:

\begin{itemize}
 \item [✓] Moment magnitude, $M > 4$
\end{itemize}

\begin{flushleft}
1 Dept. of Civil & Environmental Engineering, University of California, Los Angeles CA 90095 (yousef.bozorgnia@ucla.edu)
2 Dept. of Civil & Environmental Engineering, University of California, Berkeley CA 94720
3 CoreLogic, Inc., Oakland
4 Consultant, Oakland, CA 94602
\end{flushleft}

✓ Closest distance to the fault rupture, $R_{RUP} > 0$
✓ Time-average shear-wave velocity in the top 30-m of the site, $V_{S30} > 0$
✓ Hypocentral depth, $Z_{HYP} > 0$
✓ Rupture-plane dip angle larger than zero
✓ Rupture-plane rake angle not equal to -999 or -888 (i.e., should be known)
✓ Multiple event flag not equal to 1
✓ Interface and Intraslab flag equal to 0, 1, or 5 (i.e., should be known)
✓ Sensor depth < 2m (i.e., exclude down-hole recordings)
✓ Exclude “Geomatrix” 1st letter equal to F (i.e., located in tunnels or below ground)
✓ Visual quality flag not equal to 2 or 9 (i.e., exclude “late S-trigger” and “do not use” cases)
✓ Exclude records with PGA < 0 (i.e., should be known)
✓ Number of records per event ≥ 5
✓ $R_{RUP} <$ the minimum of R_{max} (limit of complete recording) or 1000 km
✓ Events with a ratio of the largest to smallest distance ($R_{\text{largest}} / R_{\text{smallest}} > 3$

These selection criteria resulted in the subset data listed in Table 1.

<table>
<thead>
<tr>
<th>Source region</th>
<th># of 3-component recordings</th>
<th># of events</th>
<th># of stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaska</td>
<td>406</td>
<td>10</td>
<td>183</td>
</tr>
<tr>
<td>Cascadia</td>
<td>729</td>
<td>11</td>
<td>410</td>
</tr>
<tr>
<td>Central America & Mexico</td>
<td>163</td>
<td>7</td>
<td>156</td>
</tr>
<tr>
<td>Japan</td>
<td>12850</td>
<td>56</td>
<td>1867</td>
</tr>
<tr>
<td>New Zealand</td>
<td>248</td>
<td>9</td>
<td>166</td>
</tr>
<tr>
<td>South America</td>
<td>573</td>
<td>34</td>
<td>277</td>
</tr>
<tr>
<td>Taiwan</td>
<td>2066</td>
<td>17</td>
<td>663</td>
</tr>
<tr>
<td>Total</td>
<td>17,035</td>
<td>144</td>
<td>3,722</td>
</tr>
</tbody>
</table>

Ground Motion Models

We investigated the selected database, as listed above, and developed two GMMs:

1. A global “base” model that has no regionalization.
2. A partially non-ergodic model with a regionalized constant term regionalized coefficients controlling the scaling with V_{S30} and anelastic attenuation.

Model 1 is used when we do not have enough reliable data in a region. Model 2 is used for regions with enough reliable data in those regions to provide a robust GMM. Model 2 is used for the following regions:

✓ Alaska
✓ Central America & Mexico
✓ Japan
Example tentative results for Central America and Mexico are presented in Figures 1 and 2.

Figure 1. PGA magnitude scaling for the Central America and Mexico region for an Interface event at a rupture distance of 100 km and a hypocentral depth of 20 km. In this figure, the thick pink line is the BC Hydro model [2], the solid black line is our global “base” model, the solid thin pink line is our regionalized median model, and the dashed lines are the 5% and 95% confidence intervals of the posterior distribution of the median predictions.

Figure 2. PGA distance scaling for the Central America and Mexico region for a magnitude 6.0 Interface event with a hypocentral depth of 20 km. In this figure, the solid thick pink line is the BC Hydro model [2], the solid black line is our global “base” model, the solid thin pink line is our regionalized median model, and the dashed lines are the 5% and 95% confidence limits of the posterior distribution of the median predictions.
Concluding Remarks

We have used a subset of the comprehensive NGA-Sub database to develop two ground-motion models for subduction events: (a) a global “base” model and (b) a regionalized model with the following regions: Alaska, Central America & Mexico, Japan, New Zealand, South America, and Taiwan. V_{S30} scaling, anelastic attenuation, and event terms were regionalized for these regions. For regions without sufficient data, we recommend using the global model.

Acknowledgements

The NGA-Sub research program was supported by FM Global, USGS, California Department of Transportation, and Pacific Gas & Electric Company. The supports of these organizations are gratefully appreciated. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the sponsoring agencies. We greatly benefitted from continuous and constructive interactions among the NGA research team. A key strength of the NGA projects has been this productive interaction.

References