NHERI TallWood:
Dynamic Testing and Analysis of Multi-Story Rocking Cross Laminated Timber Walls

Sarah Wichman, Graduate Research Student
Jeffrey Berman, University of Washington

Shiling Pei, Colorado School of Mines
Andre Barbosa, Oregon State University
Dan Dolan, Washington State University
John van De Lindt, Colorado State University
Eric McDonnell, KPFF
Reid Zimmerman, KPFF

11th National Conference on Earthquake Engineering
Los Angeles, CA
Friday, June 29, 2018
Cross Laminated Timber (CLT)

- Renewable
- Lightweight material
- Fast construction
- Potential for resilience
Project Outline and Scope

Tall CLT Building Archetypes
2016

- Sub Assembly Testing
 - Summer 2017 Two-Story test at NHERI@UCSD
 - 2017-2018 Assembly test at NHERI@Lehigh

Structural Response Modeling
2017 - 2019

- Develop RBSD Methodology
 - 2017 - 2019

Methodology and Model Validation

- Summer 2020 Full-Scale 10-Story Test at NHERI@UCSD
 - Resilient CLT Rocking wall system
 - Gravity columns
 - Detachable connection detail for segmental configurations
 - Non-structural system and building envelop included but not shown
 - Both individual and coupled rocking walls included
 - Intentional un-symmetric design to induce torsion
 - Include two configurations: Monolithic and Segmental
Post-Tensioned Rocking Shear Walls

UFP provides energy dissipation

PT bars strength provide recentering capabilities
Presentation Agenda

1. Experimental Tests at UCSD
2. Test Results
3. Numerical Modeling
NHERI@UCSD Shake Table Testing

CLT ROCKING WALLS

CLT DIAPHRAGMS 20 x 58 FT

10 FT

12 FT

GRAVITY FRAME EXTENDER BEAMS

GLULAM GRAVITY FRAME

SHAKE TABLE

Total height 22 ft.
20 x 4 ft. diaphragm with different CLT panel layout.
Mass Timber gravity framing.
Steel foundation to extend the width of the shake table.
CLT Rocking Walls

Post-Tensioning Saddle

Out-of-Plane Bracing

Wall to Diaphragm Shear Transfer

Rocking Wall Base Beam

UFP Energy Dissipaters
CLT Rocking Wall Performance Objectives

<table>
<thead>
<tr>
<th>Performance Level</th>
<th>Panel Crushing</th>
<th>PT Yielding</th>
<th>UFP Yielding</th>
<th>Target Drift</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLE (50% in 30)</td>
<td>Immediate Occupancy</td>
<td>No Crushing</td>
<td>No Yielding</td>
<td>Minor Yielding</td>
</tr>
<tr>
<td>DBE (10% in 50)</td>
<td>Limited Repair</td>
<td>Minor Crushing</td>
<td>Minor Yielding</td>
<td>Yielding</td>
</tr>
<tr>
<td>MCE_{R}</td>
<td>Collapse Prevention</td>
<td>Crushing</td>
<td>Yielding</td>
<td>Yielding</td>
</tr>
</tbody>
</table>
Testing Sequence

<table>
<thead>
<tr>
<th>Day</th>
<th>Test</th>
<th>Record Name</th>
<th>Hazard Level</th>
<th>PGA (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>1</td>
<td>Loma Prieta</td>
<td>SLE</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Loma Prieta</td>
<td>SLE</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Northridge</td>
<td>SLE</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Superstition Hills</td>
<td>SLE</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Northridge</td>
<td>DBE</td>
<td>0.53</td>
</tr>
<tr>
<td>Day 2</td>
<td>6</td>
<td>Northridge</td>
<td>DBE</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Imperial Valley</td>
<td>SLE</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Northridge</td>
<td>DBE</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Loma Prieta</td>
<td>DBE</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Superstition Hills</td>
<td>DBE</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Loma Prieta</td>
<td>MCE</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Northridge</td>
<td>MCE</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Superstition Hills</td>
<td>MCE</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Northridge</td>
<td>MCEx1.2</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Location: Oakland, CA
Site Class: B

PGA Levels

- **SLE:** 10% in 30
- **DBE:** 10% in 50
- **MCE**
- **MCE_R**
Presentation Agenda

1. Experimental Tests at UCSD
2. Test Results
3. Numerical Modeling
Test – Northridge MCE x 1.2
Experimental Test Results

Story Drifts

![Graph showing story drifts at different hazard levels. The graph includes data points for Roof Drift and Floor Drift across various hazard levels such as SLE, DBE, MCE, and MCEx1.2.]

Base Shear

![Graph showing base shear at different hazard levels. The graph includes data points for SLE, DBE, MCE, and MCEx1.2.]

- Roof Drift
- Floor Drift

Hazard Level
Base Shear Hysteresis

SLE: Test 1
Loma Prieta

DBE: Test 8
Northridge

MCE1.2: Test 14
Northridge
Base of CLT Rocking Wall Damage
Test – Northridge MCE x 1.2 – Toe Rocking
Presentation Agenda

1. Experimental Tests at UCSD
2. Test Results
3. Numerical Modeling
Numerical Model

Tension only Material:
MultiSpring Contact Elements

Building Drift Time Histories

DBE: Test 10 – Superstition Hill

MCEx1.2: Test 14 – Northridge
PT Forces

DBE: Test 10 – Superstition Hill

MCEx1.2: Test 14 – Northridge
Were Performance Objectives Met?

<table>
<thead>
<tr>
<th>Performance Level</th>
<th>Panel Crushing</th>
<th>PT Yielding</th>
<th>UFP Yielding</th>
<th>Target Drift</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLE (50% in 30)</td>
<td>Immediate Occupancy</td>
<td>No Crushing</td>
<td>No Yielding</td>
<td>Minor Yielding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBE (10% in 50)</td>
<td>Limited Repair</td>
<td>No Crushing</td>
<td>No Yielding</td>
<td>Yielding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minor Crushing</td>
<td>Minor Yielding</td>
<td></td>
</tr>
<tr>
<td>MCE<sub>R</sub></td>
<td>Collapse Prevention</td>
<td>No Crushing Crushing</td>
<td>No Yielding Yielding</td>
<td>Yielding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How would have the Specimen Responded with a Rigid Foundation?

- No Crushing
- No Yielding
- No Yielding
- 0.5% Drift
- 1% Drift
- 1-2% Drift
- 2% Drift
- 2-3% Drift
- 4% Drift
How would the Specimen Responded on a Rigid Diaphragm?

Roof Drifts

- SLE
- SLE_rigid
- DBE
- DBE_rigid
- MCE
- MCE_rigid

Peak PT Force

- SLE
- SLE_rigid
- DBE
- DBE_rigid
- MCE
- MCE_rigid
How would the Specimen Responded on a Rigid Diaphragm?

UFP

Panel Crushing

![Graph showing UFP and Panel Crushing](image)
Updated Performance Objectives with a Rigid Foundation

<table>
<thead>
<tr>
<th>Performance Level</th>
<th>Panel Crushing</th>
<th>PT Yielding</th>
<th>UFP Yielding</th>
<th>Target Drift</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLE (50% in 30)</td>
<td>Immediate Occupancy</td>
<td>No Crushing</td>
<td>No Yielding</td>
<td>Minor Yielding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBE (10% in 50)</td>
<td>Limited Repair</td>
<td>Minor Crushing</td>
<td>No Yielding</td>
<td>Minor Yielding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yielding</td>
</tr>
<tr>
<td>MCE_r</td>
<td>Collapse Prevention</td>
<td>Crushing</td>
<td>No Yielding</td>
<td>Yielding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

• A full scale test of a two-story full timber building with post-tensioned rocking CLT walls was successful and showed promising results for the future 10-story test.

• The rocking wall base beam protected the base of the wall during the tests

• OpenSees modeling can be improved to better match experimental results. Some improvements that could be made include:
 • Diaphragm deformation
 • Accumulation of base beam deformation
 • Torsional effects
Acknowledgements

This research project is supported by the National Science Foundation through a number of awards including: CMMI 1636164, CMMI 1634204, CMMI 1635363, CMMI 1635227, CMMI 1635156, CMMI 1634628 and multiple industry partners.
Thank You!