Shake Table Evaluation of Screen Grid Core Insulated Concrete Form Walls

A. Mohammed1, P. Dusicka2

1PhD Candidate, Dept. of Civil and Environmental Engineering, Portland State University
2Associate Professor, Dept. of Civil and Environmental Engineering, Portland State University

Tuesday, June 26 – Friday, June 29
What are Insulated Concrete Forms (ICF) Walls? & Why Studying Screen Grid ICF Walls?

Insulated Concrete Form (ICF) walls are building components that are primarily used in residential construction that strives for more sustainable buildings.

ICF Wall Advantages:
- Reduce greenhouse gases.
- Reuse of recycled materials.
- Energy efficiency.
- Prevent growth of mold and mildew.
- Minimize radon gas leakage.
- Decrease out loud noises.

Investigation Objectives:
- Dynamic properties of SGICF walls.
- Improve ICF walls lateral strength.
- Suggest new design of ICF walls.

Types of ICF walls

Previous Investigations on ICF walls

Abdel-Mooty et al

P. Dusicka and C. Werner

J. Garth

https://ascelibrary.org/doi/10.1061/(ASCE)29ST.1943-541X.0000354
https://pdxscholar.library.pdx.edu/open_access_etds/1857/
Screen Grid Insulated Concrete Walls Details

SGICF Wall

Proposed Improved Core Wall
Test Setup and Ground Motion

<table>
<thead>
<tr>
<th>Test</th>
<th>W-RC</th>
<th>W-FB</th>
<th>G-RC</th>
<th>G-FB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tn [sec]</td>
<td>ζ [%]</td>
<td>Tn [sec]</td>
<td>ζ [%]</td>
</tr>
<tr>
<td>Initial Values</td>
<td>0.28</td>
<td>0.92</td>
<td>0.3</td>
<td>1.0</td>
</tr>
<tr>
<td>At the End of Testing</td>
<td>0.51</td>
<td>3.1</td>
<td>0.57</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Imperial Valley earthquake motion, M6.5
Failure Modes

SGICF wall-Plain Concrete

![Graph showing load-displacement behavior for Plain Concrete with a peak drift ratio of approximately 2.9%]

SGICF wall-Fiber Reinforced Concrete

![Graph showing load-displacement behavior for Fiber Reinforced Concrete with a peak drift ratio of approximately 2.9%]

- Drift Ratio (%)
- Lateral Force (kip)
- Lateral Displacement (in)

W-RC: ~2.9%
W-FB: ~2.9%
Failure Modes

New wall-Plain Concrete

New wall-Fiber Reinforced Concrete
Results Comparison
Results Comparison

Drift profile at 100% ground motion

[Graph showing drift ratios and height for different ground motion conditions: GM-1.0, W-RC, W-FB, G-RC, G-FB]
Conclusion

- SGICF wall with plain concrete showed higher lateral strength.
- Both SGICF walls reached similar levels of drift capacity.
- Rebar fracture at the base was the failure mode of the plain concrete SGICF wall.
- Strength degradation was the failure mode of SGICF wall that has steel fiber.
- Voids found in SGICF wall that has steel fiber caused the strength degradation.
- Workability decreased due to using of the steel fiber reinforced concrete.
- The new proposed walls showed lower lateral strength capacity when compared with SGICF walls.
- The new proposed walls showed higher lateral displacement capacity.
Thank you!

Questions?

anwer@pdx.edu