Numerical prediction of the in-plane cyclic behavior of reinforced concrete shear walls

G. Faraone¹, L. Moschetti² and T. C. Hutchinson³

¹ Graduate Student Researcher, Dept. of Civil Engineering, University of California, San Diego
² Visiting Scholar, Dept. of Civil Engineering, University of California, San Diego
³ Professor, Dept. of Civil Engineering, University of California, San Diego

Thursday, June 28, 2018
Overview

• Introduction
• Numerical models
• Objective- sensitivity to geometry and material parameters
• Results
• Conclusions
Introduction

Reinforced concrete (RC) structural walls provide lateral stiffness and strength in medium to tall buildings.

Performance of few RC shear walls in recent earthquakes raised concerns.

- Splices within plastic hinge length
- Thin wall boundaries
- Low longitudinal reinforcement ratio

Need for code improvements?

Need for good analytical tools!

• Need to simulate wall response and anticipate failure mode, thus exercise the numerical tools response sensitivity geometry and material properties.
Numerical Models

1. **Micro** (membrane Models)
2. **Meso-scale** (fiber and membrane Models)
3. **Macro** (Beam Column, Multiple Spring, Truss, TVLEM, MVLEM Models)
4. **Shell elements** (MCTF, Vecchio et al., 1986)

Cyclic Shear-Flexure Interaction Model for RC Walls in OpenSees:

SFI-MVLEM: 2D fiber based macroscopic model

- Coupling of axial and shear response at the panel level.
- Model formulation based on fixed strut angle model (FSAM) + shear resisting mechanism along concrete cracks

RC Shear Wall Model

Validation

Experimental Data

Sensitivity study

Wall specimen considered

<table>
<thead>
<tr>
<th>Wall</th>
<th>AR</th>
<th>(\frac{b}{L})</th>
<th>(\rho_{\text{be},l}) [%]</th>
<th>(\rho_{\text{web},v}) [%]</th>
<th>N/A (f'_c) [%]</th>
<th>(f'_c) [MPa]-[ksi]</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSH1</td>
<td>2.28</td>
<td>0.10</td>
<td>1.32</td>
<td>0.30 – 0.25</td>
<td>5.1</td>
<td>45.0 - 6.5</td>
<td>Lowest ductility prop of reinf.</td>
</tr>
<tr>
<td>WSH2</td>
<td>2.28</td>
<td>0.10</td>
<td>1.32</td>
<td>0.30 – 0.25</td>
<td>5.7</td>
<td>40.5 - 5.9</td>
<td>Improved ductility WSH1</td>
</tr>
<tr>
<td>WSH3</td>
<td>2.28</td>
<td>0.13</td>
<td>1.54</td>
<td>0.54 – 0.25</td>
<td>5.8</td>
<td>39.2 – 5.7</td>
<td>Model ductile wall</td>
</tr>
<tr>
<td>WSH4</td>
<td>2.28</td>
<td>0.00</td>
<td>1.54</td>
<td>0.54 – 0.25</td>
<td>5.7</td>
<td>40.9 – 5.9</td>
<td>WSH3 without ties (limited ductility)</td>
</tr>
<tr>
<td>WSH5</td>
<td>2.28</td>
<td>0.13</td>
<td>0.67</td>
<td>0.27 – 0.25</td>
<td>12.8</td>
<td>38.3 – 5.6</td>
<td>Half reinf. of WSH3, but same moment capacity</td>
</tr>
<tr>
<td>WSH6</td>
<td>2.26</td>
<td>0.19</td>
<td>1.54</td>
<td>0.54 – 0.25</td>
<td>10.8</td>
<td>45.6 – 6.6</td>
<td>Reinf. as WSH3, large moment capacity</td>
</tr>
<tr>
<td>UCSD2</td>
<td>2.00</td>
<td>0.19</td>
<td>1.95</td>
<td>0.80 – 0.55</td>
<td>7.3</td>
<td>41.5 – 6.0</td>
<td>Full-scale ductile wall (ACI-318). Ordinary reinf. prop.</td>
</tr>
</tbody>
</table>

1: Dazio et al. (2009) - Quasi-static cyclic test and plastic hinge length analysis of RC shear walls.

2: Faraone et al. (2017) - Post-installed anchors behavior in a full scale slender RC shear wall subjected to cyclic lateral loading.
Sensitivity study- wall database

Common features:
- $AR \approx 2$
- Modern code-based design

Variations:
- Range of axial loads
- High and low ductility design

Dazio et al. (2009)- Quasi-static cyclic test and plastic hinge length analysis of RC shear walls.
Faraone at al. (2017)- Post-installed anchors behavior in a full scale slender RC shear wall subjected to cyclic lateral loading.
Sensitivity study

Geometry - mesh sensitivity

Dowel stiffness

\[F_d = k_d \Delta_d \]
\[K_d = \alpha E_{s0} \]
\[\alpha = \text{from 0 to 0.05} \]

Tangent stiffness upon unloading from tension

Tensile concrete strength

- Hsu: \(f_t = 3.75 \sqrt{f'c} \)
- EC2: \(f_t = 1.5 f'c^{0.67} \)
- ACI: \(f_t = 7.4 \sqrt{f'c} \)
Results - Mesh sensitivity

\[
\text{Error at peaks} = \left(\frac{F_{\text{exp}} - F_{\text{FEM}}}{F_{\text{exp}}} \right) \times 100
\]
Results - Dowel stiffness

Dowel force: $F_d = k_d \Delta_d$
Dowel stiffness: $K_d = \alpha E_{s0}$

Controlling parameter: $\alpha =$ from 0 to 0.05
Results - Tensile concrete strength

Error in lateral force at peak drift ratio, versus top drift ratio.

Error at peaks = \(\frac{F_{\text{exp}} - F_{\text{FEM}}}{F_{\text{exp}}} \times 100 \)

Tensile concrete strength
- Hsu: baseline
- EC2: \(\approx 70\% \) increase
- ACI: \(\approx 100\% \) increase
Results - Unloading stiffness (from tension)

Drift Ratio [%]

Dissipated energy (area underneath the curve):
- E_0: sudden crack closure
- E_1: gradual crack closure
- E_{exp}: experimental test.

<table>
<thead>
<tr>
<th>Wall</th>
<th>E_0/E_{exp}</th>
<th>E_1/E_{exp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSH11</td>
<td>0.95</td>
<td>1.09</td>
</tr>
<tr>
<td>WSH21</td>
<td>1.08</td>
<td>1.21</td>
</tr>
<tr>
<td>WSH31</td>
<td>1.02</td>
<td>1.13</td>
</tr>
<tr>
<td>WSH41</td>
<td>1.03</td>
<td>1.19</td>
</tr>
<tr>
<td>WSH51</td>
<td>0.98</td>
<td>1.15</td>
</tr>
<tr>
<td>WSH61</td>
<td>1.10</td>
<td>1.22</td>
</tr>
<tr>
<td>UCSD2</td>
<td>0.98</td>
<td>1.02</td>
</tr>
</tbody>
</table>

1: Dazio et al. (2009)- Quasi-static cyclic test and plastic hinge length analysis of RC shear walls.
2: Faraone et al. (2017)- Post-installed anchors behavior in a full scale slender RC shear wall subjected to cyclic lateral loading.
Conclusions

- **Mesh sensitivity:** Element to wall height ratio of 1/5 produced sufficiently accurate results.

- **Dowel action:** influences the shear estimation. Optimal a value observed to be in the upper limit range (around 0.05).

- **Tensile concrete strength:** 20% variation in the lateral load capacity predictions.

- **Unloading stiffness from tension:** FE models implementing the sudden gap closure estimated the dissipated energy within 10%.

Globally the SFI-MVLEM was shown to reasonably capture the strength gain and post-peak strength reductions observed in the flexural walls considered in these analyses.
The research presented in this paper was sponsored by the Hilti Corporation and Hilti North America as part of the Hilti Seismic Project. The first author was also partially supported by the Jacobs School of Engineering at UCSD. The support of these organizations is gratefully acknowledged. The authors would also like to thank John Silva (Sr. Dir. Codes & Standards, Hilti North America), Dr. Roberto Piccinin (Project Mgr, Codes & Approvals, Hilti AG) and Dr. Ulrich Bourgund (VP International Regulation & Approval, Hilti AG) for their continued support and technical input. Findings, opinions, and conclusions are those of the authors and do not necessarily reflect those of the sponsoring organizations.

ACKNOWLEDGEMENTS
Thank you for your attention