ANALYTICAL AND EXPERIMENTAL STUDY ON STEEL BRACES WITH STRONGER MIDDLE LENGTH TREATED BY INDUCTION HARDENING

K. Skalomenos¹, M. Kurata², Y. Fukutomi³, M. Nishiyama⁴

¹Assistant Professor, Disaster Prevention Research Institute, Kyoto University
²Associate Professor, Disaster Prevention Research Institute, Kyoto University
³Graduate Student, Faculty of Engineering, The University of Tokyo
⁴Professor, Department of Architecture and Architectural Engineering, Kyoto University

Tuesday, June 26 – Friday, June 29
Presentation Outline

1. Introduction – Research Motivation
2. Concept of Proposed Steel Brace
3. Induction Heating and Quenching Technologies
4. Analytical Investigation
5. Experimental Investigation
6. Conclusions
Steel braces constitute the main earthquake-resistant mechanism in structures. They provide very large **strength** and **stiffness** for controlling the lateral drifts.
They buckle suddenly and lose compressive strength – At small axial deformations

High stress concentration leads to middle local buckling – Unstable energy dissipation
Presentation Outline

1. Introduction – Research Motivation
2. Concept of Proposed Steel Brace
3. Induction Heating and Quenching Technologies
4. Analytical Investigation
5. Experimental Investigation
6. Conclusions
New Design Scenario for Steel Braces

- Conventional

- New design

2. Concept of Proposed Steel Brace

- Conventional Brace
- New design

Axial load (kN) vs. Story Drift (%)

- Buckling

- Delay Buckling

Stress (MPa) vs. Strain (%)

- $2 \sim 4 \times \sigma_y$
New Design Scenario for Steel Braces

- Influence of the middle length strengthening:

A. Middle length remains elastic. Conventional steel parts absorb the deformation.

→ Compression strength can increase

B. Local buckling (plastic hinge) is expected to occur at the conventional steel part

→ Stabilization of Post-buckling behavior
New Design Scenario for Steel Braces

- Post buckling behavior

\[
\begin{align*}
\text{Elastic deformation} & : \quad w_e = \frac{Nl}{EA} \quad \cdots \text{(1)} \\
\text{Geometric deformation} & : \quad w_b = \frac{l}{2} \cdot (a\theta_1^2 + (1-a)\theta_2^2) \\
\text{Plastic deformation} & : \quad w_p = d \cdot \frac{\theta_1 + \theta_2}{2} \quad \cdots \text{(3)} \\
\text{Axial deformation} & : \quad w = w_e + w_b + w_p \quad \cdots \text{(4)}
\end{align*}
\]

Geometrically,
\[
M = N \cdot u = N \cdot a(1-a)(\theta_1 + \theta_2)l \quad \cdots \text{(5)}
\]

From M-N interruption,
\[
\frac{M}{M_p} + \frac{N}{N_y} = 1 \quad \cdots \text{(6)}
\]

Here,
\[
M_p = A \frac{d}{2} \sigma_y = N_y \cdot \frac{d}{2} \quad \cdots \text{(7)}
\]

2. Concept of Proposed Steel Brace

From eq.(5), (6), (7)
\[
\theta_1 + \theta_2 = \frac{1}{2a(1-a)} \cdot d \frac{N_y}{N} - 1 \quad \cdots \text{(7a)}
\]

or \[
\theta_2 = \frac{1}{2(1-a)} \cdot d \frac{N_y}{N} - 1 \quad \cdots \text{(7b)}
\]

Substituting eq.(1), (2), (3), (7) for eq.(4)
\[
\frac{w}{l} = \frac{N}{N_y} \cdot \varepsilon_y + \frac{1}{8a(1-a)} \left(\frac{d}{l} \right)^2 \left(\frac{N_y}{N} - 1 \right)^2 + \frac{1}{4a(1-a)} \left(\frac{d}{l} \right)^2 \left(\frac{N_y}{N} - 1 \right) \quad \cdots \text{(8)}
\]

\[
\frac{w}{l\varepsilon_y} = \frac{N}{N_y} + \frac{1}{4a(1-a)} \frac{2}{\pi^2 \lambda c^2} \left[\left(\frac{N_y}{N} \right)^2 - 1 \right] \quad \cdots \text{(9)}
\]
Presentation Outline

1. Introduction – Research Motivation
2. Concept of Proposed Steel Brace
3. Induction Heating and Quenching Technologies
4. Analytical Investigation
5. Experimental Investigation
6. Conclusions
Strength Enhancement

By Induction Heat (IH) Treatment Technology

- Alternate magnetic flux
- Eddy current
- Heating coil
- High frequency power supply
- Heating object

3. Induction heating and quenching technologies

Graph showing tensile stress (MPa) vs. strain.
Induction heat (IH) treatment technology heats up only a selected area of the steel surface over 1000°C, and then, by quenching the steel in water the workpiece obtains the new material properties, such as three-to-four times higher yield stress.
Compression Coupon Tests

3. Induction heating and quenching technologies

<table>
<thead>
<tr>
<th></th>
<th>Stress (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6 x (\sigma_y)</td>
<td></td>
</tr>
<tr>
<td>CS</td>
<td></td>
</tr>
<tr>
<td>IHS</td>
<td></td>
</tr>
</tbody>
</table>

Yielding stress (0.2% offset)

<table>
<thead>
<tr>
<th>Material</th>
<th>Stress (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional steel</td>
<td>345 MPa</td>
</tr>
<tr>
<td>Induction heating steel</td>
<td>880 MPa</td>
</tr>
</tbody>
</table>

Short Column tests

Cross-section

- Stain Gauges Location
- Conventional Boundary
- IH steel
- Boundary
Tension Coupon Tests

3. Induction heating and quenching technologies

IH-treated steel provides:
- 2~3 times larger yield stress
- Three times lower ductility

<table>
<thead>
<tr>
<th>Steel</th>
<th>Yielding Stress (MPa)</th>
<th>Ultimate Strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>354.0</td>
<td>0.217</td>
</tr>
<tr>
<td>IH-treated</td>
<td>778.0</td>
<td>0.069</td>
</tr>
</tbody>
</table>
1. Introduction – Research Motivation
2. Concept of Proposed Steel Brace
3. Induction Heating and Quenching Technologies
4. Analytical Investigation
5. Experimental Investigation
6. Conclusions
In order to evaluate the effect of the IH treatment, three design parameters were evaluated analytically by OpenSees:

1. Slenderness ratio

 \[n = \left(\frac{L_{IH}}{L_t} \right) \]

2. Yield stress of IH steel

 \[\frac{\sigma_{y,\text{IH}}}{\sigma_{y,\text{CS}}} \]

3. Length ratio of IH portion.

 \[L_{IH} : \text{IH part length} \]
 \[L_t : \text{entire length} \]

\[n\% \]
4. Analytical Investigation

- Evaluation of post buckling behavior

The evaluation parameter: the storey drift where the brace reaches ‘80% of the buckling load’.

![Graph showing the evaluation parameter: the storey drift where the brace reaches 80% of the buckling load.](chart.png)
Analytical Investigation - Results

- **Slenderness ratio** – results for $n=0.6$

For a slenderness ratio $0.5 < \lambda < 1.5$

Buckling load **increased** by 10%

IH brace provides with **bi-linear** behavior until 0.5% drift

Compression strength exhibits **less deterioration** in post-buckling region especially for **small values of slenderness ratio**
Analytical Investigation - Results

- **Yield Stress** – results for $\lambda=0.72$

IH-to-conventional steel yielding ratio

$$1 < \frac{\sigma_{IH}}{\sigma_{CS}} < 4$$

Buckling load and post-buckling behavior remain the same for values of yielding ratio more than two.
Length of IH portion – results for $\sigma_{IH}/\sigma_{CS} = 4$

$0.46 < n < 0.80$

As the ratio n increases the strength exhibits less deterioration in the post-buckling behavior.

→ Need to check the maximum and cumulative strain
1. Introduction – Research Motivation
2. Concept of Proposed Steel Brace
3. Induction Heating and Quenching Technologies
4. Analytical Investigation
5. Experimental Investigation
6. Conclusions
Test Plan

1. Conventional Steel Brace (CBB)
 - Slenderness (norm.) 0.70
 - Gusset plate connections (AISC, 2010)

1. Induction Heated (IH-CBB)
 - Slenderness 0.70
 - Gusset plate connections (pin)
 - IH-to-conv. steel yield ratio = 2.6
 - Length ratio of IH = 60%
Test Set-up

Hydraulic Jack

Specimen

Dimensions: mm

4. Experimental Investigation

Drift Angle (% rad.)

No. of Cycles

0.1 0.25 0.5 0.75 1 1.5 2 3 4

0 2 4 6 8 10 12 14 16 18
Specimen Overview

4. Experimental Investigation
Test results: Overall deformation and local buckling

4. Experimental Investigation

CBB
- Compression -0.5% 1st
- Compression -1.5% 1st

IHCBB
- Compression -0.5% 1st

Graphs:
- Deformation vs. Location (mm)
 - CBB: 0.25%, 0.50%, 0.75%, 1.00%
 - IHCBB: 0.25%, 0.50%, 0.75%, 1.00%, -0.50% (2nd)
Test results: Cyclic behavior

Comparison with CBB test.
Normalized by yield strength.
No data measured in the dotted red line.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>K_e (kN/mm)</th>
<th>$P_{y,tension}$ (kN)</th>
<th>P_c (kN)</th>
<th>P_u (kN)</th>
<th>Global buckling</th>
<th>Local buckling</th>
<th>Fracture</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBB</td>
<td>62.3</td>
<td>119.1</td>
<td>-219.6</td>
<td>298.8</td>
<td>1st -0.5 %</td>
<td>2nd -1.0 %</td>
<td>2nd 2.0 %</td>
</tr>
<tr>
<td>IHCBB</td>
<td>61.5</td>
<td>128.4</td>
<td>-257.1</td>
<td>315.3</td>
<td>1st -0.5 %</td>
<td>1st -0.5 %</td>
<td>2nd 1.0 %</td>
</tr>
</tbody>
</table>
Global Buckling in IHCBB

4. Experimental Investigation

[Diagram showing out frame components: out frame, tension, main frame, roller, gusset plate, brace tube, compression, easy to rotate, loading frame, out-of-plane imperfections]
4. Experimental Investigation

Test results: Stress-strain relationships

IH steel
Conventional steel
Conclusions

Analytical study

- An increase of buckling load and an improved post-buckling behavior was observed for intermediate values of slenderness ratio.
- The improvement was capped at the values of IH-to-conventional yield stress ratio more than two.
- As the length of IH portion increases the negative slope in post-buckling region becomes less steep moderating the strength deterioration.

Experimental study

- Buckling observed in a compressive load almost 20% larger than the corresponding conventional brace.
- A severe local buckling took place within the unheated portions which led to an earlier than expected global failure.
THANK YOU FOR YOUR KIND ATTENTION

K. Skalomenos1, M. Kurata2, Y. Fukutomi3, M. Nishiyama4

1Assistant Professor, Disaster Prevention Research Institute, Kyoto University
2Associate Professor, Disaster Prevention Research Institute, Kyoto University
3Graduate Student, Faculty of Engineering, The University of Tokyo
4Professor, Department of Architecture and Architectural Engineering, Kyoto University

Tuesday, June 26 – Friday, June 29