3-D Reconstructions and Numerical Simulations of Precarious Rocks in Southern California

C.E. Wittich1, T.C. Hutchinson2, J. DeSanto3, and D. Sandwell3

1Department of Civil Engineering, University of Nebraska-Lincoln
2Department of Structural Engineering, University of California, San Diego
3Scripps Institute of Oceanography, University of California, San Diego
Presentation Outline

Background & Motivation
Survey of Precarious Rocks
3-D Reconstructions
 ◦ Data Acquisition
 ◦ Surface Meshing
Fragility Analysis
Effect of Interface Variations
Conclusions & Future Work
Background & Motivation

Reliable seismic hazard estimates are essential for building resilience

- There is a lack of observation or measurement for many rare, high-magnitude earthquakes
- Estimates of rare seismic events are highly uncertain
Precariously Balanced Rocks (PBRs)

Individual or systems of slender, freestanding rocks that are free to topple, *if forced*

- Current precarious state is indicative of an unexceeded ground motion at its site and over its lifetime
- Widespread throughout greater California and Nevada regions
 - Nearly 2000 documented PBRs are archived by the Southern California Earthquake Center (SCEC)
 - Including in areas near to known and active faults

Images from: 2016 SCEC Archive of Precariously Balanced Rocks
Precariously Balanced Rocks (PBRs)

Individual or systems of slender, freestanding rocks that are free to topple, *if forced*

- Current precarious state is indicative of an unexceeded ground motion at its site and *over its lifetime*
- Widespread throughout greater California and Nevada regions
 - Nearly 2000 documented PBRs are archived by the Southern California Earthquake Center (SCEC)
 - Including in areas near to known and active faults

How long has the rock system been in its current state?
Precariously Balanced Rocks (PBRs)

Individual or systems of slender, freestanding rocks that are free to topple, *if forced*

- Current precarious state is indicative of an *unexceeded ground motion* at its site and over its lifetime
- Widespread throughout greater California and Nevada regions
 - Nearly 2000 documented PBRs are archived by the Southern California Earthquake Center (SCEC)
 - Including in areas near to known and active faults

What ground motion would it take to topple?
Precariously Balanced Rocks (PBRs)

What ground motion would it take to topple?

- Dynamic behavior of a rigid, freestanding structural system
- Likely to have a significant rocking response:
 - Nonlinear with respect to geometry
 - Piecewise with respect to orientation

Equation of motion for rotation, θ, subject to horizontal ground acceleration, \ddot{x}_g:

$$(I + mR^2)\ddot{\theta} = m\ddot{x}_g R \cos(\alpha - |\theta|) - \text{sgn}(\theta)mRg \sin(\alpha - |\theta|)$$

Coefficient of restitution at impact:

$$r = 1 - \frac{3}{2} \sin^2 \alpha$$

From Housner (1963)
Survey: Scope

Survey of PBRs conducted in October 2016

- Location: Jacumba, CA
- Previously Identified PBRs: 2
- Proximity to:
 - Elsinore Fault
 - Laguna Salada Fault
- Goal: Study impact of geometric data acquisition methods
 - Laser scanning (lidar)
 - Aerial structure-from-motion (UAV)
Survey: Site Overview
Survey: Selected PBRs

(a) PBR-01 (R4_00262)
(b) PBR-02 (R4_00260)
(c) PBR-03
(d) PBR-04
(e) PBR-05
(f) PBR-06
3D Reconstructions: Data Acquisition

Laser Scanning (Lidar)
- Based on time-of-flight or phase of laser light reflections
- Multiple scans required to reduce occlusion
- Ground-based on tripod
- Scale and orientation is automatic

Structure-from-Motion (SfM)
- Based on corresponding pixel features in multiple images
- Multiple images required
- Aerial-based on UAV
- Required GPS targets for scale and orientation
3D Reconstructions: Results

Point clouds via lidar and SfM compared:

- Similar point densities (2.4 – 2.7 million points)
- Difference in scale < 1% between two methods
- Noticeable occlusion, particularly near the interface
 - Lidar resulted in occlusion near the top and interface of rocks
 - SfM shows superior coverage due to larger number of imaging locations
3D Reconstructions:

Interface is occluded, but necessary for analysis

- Point generation scheme devised based on perimeter of interface:
 1. Extract perimeter of interface within the point cloud
 2. Data points generated in linear segments
 3. Discretization variable, but kept consistent with rest of PBR cloud

- Poisson surface reconstruction generates a watertight triangulated mesh
Fragility Analysis

Given geometric data, PBRs are compared to current estimated seismic hazard through a points-in-hazard-space approach:

- **Seismic Hazard**: From USGS (2014) at PBR site
- **Overturning PGA**: From Dimitrakopoulos and Paraskeva (2015) for 50 – 99% probability of overturning
- **Frequency of Exceedance**: From Bell et al. (1998) in which PBRs in this region determined to be 10 – 30 k years old

Limitations:
- Slip not permitted
- Motion direction
- Two-dimensional geometry with two points
Interface Effects: Development

Probability of overturning is limited by the rocking model

- Rocking model assumes two-points for rocking in the two-dimensional body
- Realistic PBRs have complex interfaces with multiple potential points of rocking
- Two-dimensional model was extended to account for this situation
Interface Effects: Overturning

Impact of multiple rocking points studied via overturning spectra

- Input: Sinusoidal pulse of amplitude A_p and frequency ω_p
- Output: Maximum rocking rotation (θ)

- Significant increase in overturning observed due to multiple rocking points
Concluding Remarks

Conclusions

- Lidar points clouds are more accurate than SfM point clouds
- Due to rocky terrain and tripod mounting, SfM via UAV is recommended
- Preliminary analyses indicate that PBRs in the Jacumba cluster may indicate an inconsistency with current seismic hazard

Future Work

- Probabilistic overturning analyses accounting for:
 - Slip and uplift motions
 - Three-dimensional response
 - Site-specific motions including direction of PBR with respect to faults
Acknowledgments

Funding for this project was provided by:

University of California, San Diego’s Frontiers of Innovation Scholars Program

Access to the SCEC PBR database was provided by:

Dr. Glenn Biasi
University of Nevada Reno

Surveying equipment for the PBR survey was provided:

Cultural Heritage Engineering Initiative
University of California, San Diego
3-D Reconstructions and Numerical Simulations of Precarious Rocks in Southern California

Christine E. Wittich, Ph.D.
Assistant Professor of Civil Engineering
University of Nebraska-Lincoln
cwittich@unl.edu