Estimating Axial Force Demand in Columns of Seismic-Resistant Steel Structures

L. Shrestha1, M. Bruneau2

1Structural Engineer, Earthquake Engineering Research and Consultation Center, Nepal
2Professor, Dept. of Civil Engineering, University at Buffalo, The State University of New York, New York, U.S.A.

Tuesday, June 26 – Friday, June 29
Axial Force Demands in Columns

• Current Design Approach
 ▪ Obtained by considering simultaneous yielding at all the stories

• Issue
 ▪ Over conservative for tall structures
 - Results in uneconomical sections

• Past studies
 ▪ Considering SRSS combination of the forces
 ▪ Study on simultaneously yielding stories
 ▪ Yet, no method has been proposed to quantify the number of simultaneously yielding stories (N_{SYS}) in buildings
Methodology

• Procedure for estimating N_{SYS} due to full-sine velocity pulse excitation
 – Use concepts of wave propagation theory (Relationship between ground excitation and story forces)

• Procedure extended for earthquake excitation
 – Identify the main pulse and idealize with full-sine pulse

• Procedure for estimating axial force demand by using the estimated N_{SYS}
Structure Considered

- Forty story shear-type BRB frame
- $k_{col}/k_{br}=0.25$
- $R=8$
- Elastic-ideal-plastic (kinematic strain hardening with $r=1\%$)
- Viscous damping of 2%
Ground Excitation Considered

Category A

Category B

Category C
Results for N_{SYS} (Condensed)
Results for N_{SYS} (Condensed)

<table>
<thead>
<tr>
<th>SN</th>
<th>EQ</th>
<th>$MN_{SYS,Incident}$</th>
<th>$N_{SYS,Top}$</th>
<th>$N_{SYS,Bottom}$</th>
<th>Maximum N_{SYS}</th>
<th>Discrepancy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Estimated</td>
<td>Actual</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>WPI046</td>
<td>21</td>
<td>21</td>
<td>23</td>
<td>-8.70</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>LCN275</td>
<td>15</td>
<td>15</td>
<td>11</td>
<td>36.36</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>H-E04230</td>
<td>15</td>
<td>15</td>
<td>11</td>
<td>36.36</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>B-PTS225</td>
<td>22</td>
<td>22</td>
<td>15</td>
<td>46.67</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>TCU068-N</td>
<td>16</td>
<td>16</td>
<td>10</td>
<td>60.00</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CHY101-N</td>
<td>14</td>
<td>14</td>
<td>8</td>
<td>75.00</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>DZC270</td>
<td>15</td>
<td>15</td>
<td>9</td>
<td>66.67</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>YPT060</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>CNP196</td>
<td>17</td>
<td>17</td>
<td>13</td>
<td>30.77</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>HAD255</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>RO3090</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>-40.63</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>CYC285</td>
<td>27</td>
<td>27</td>
<td>24</td>
<td>12.50</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>C12320</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>HOL090</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>-14.29</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>GGP100</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>ORR021</td>
<td>13</td>
<td>13</td>
<td>15</td>
<td>-13.33</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>I-ELC180</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>H9Oly</td>
<td>12</td>
<td>12</td>
<td>9</td>
<td>33.33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>17.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Standard Deviation</td>
<td>30.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Estimation of Axial Force Demand

• Vertical force transferred from:
 • N_{SYS} yielded stories + SRSS of the remaining stories considering their yield capacity

• Consider three cases
 • $AFD = \text{maximum} \left(P_{Incident, j}, P_{Top, j}, \text{and} \ P_{Base, j} \right)$
Calculation of Axial Force Demand
Comparing $P_{\text{Estimated}}$ and P_{Actual} (Condensed)

Average $P_{\text{Estimated}}/P_{\text{Actual}}$ for all the EQs was 1.12
Strain Hardening at different stories
(Condensed)

1994 Nortridge, Newhall-W.Pico Canyon Rd. (WP046)
Conclusion

• Estimation procedure for finding N_{SYS} was found to work well for the BRB frames considered.
• Axial force demand estimated by considering forces transferred from SYS and SRSS of remaining stories yielded good estimates of the actual values.
• SYS stories do not reach the ultimate capacity at the same time.
Related Papers

Thank You!