Using FEMA P695 to Interpret ASCE 41 Seismic Performance of Special Moment Frames

M.S. Speicher1, J. Dukes1, K.K.F. Wong1

1Research Structural Engineer, National Institute of Standards and Technology, Gaithersburg, MD.

Tuesday, June 26, 2018
Outline

Motivation
Approach
Results
Discussion
Sensitivity Study
Conclusions
Motivation

2009
Research Required to Support Full Implementation of Performance-Based Seismic Design

Critical need to benchmark “first-generation” PBSD

2010
Perspectives on ASCE 41 for Seismic Rehabilitation of Buildings

74% voted for calibration/comparison between ASCE 41 and ASCE 7

If a building is designed (ASCE 7) and built today and then assessed (ASCE 41) tomorrow, would it need to be retrofitted?

Today

Tomorrow
Results indicated new building designs were **not performing well** per ASCE 41.

BUT, do these buildings **meet** the intent of the new building code?

\[P(C \mid MCE) \leq 10\% ? \]
Motivation (3)

Building	Design Approach	Nonlinear Static Procedure			Nonlinear Dynamic Procedure		
----------	----------------	-----------------------------					
		RBS connection	Column	Panel Zone	RBS connection	Column	Panel Zone
4-Story	ELF	Pass	Pass	Pass	Pass	Pass	Pass
	RSA	×	Pass	Pass	×	Pass	Pass
8-Story	ELF	Pass	×	Pass	×	×	Pass
	RSA	Pass	×	Pass	×	×	×

Motivation (3)

- **Nonlinear:**
 - NDP median
 - NDP mean
 - NDP 84th
 - NDP mean + σ
 - NSP

- **Linear:**
 - LSP
 - LDP

DCR_{ij} = Max of left and right connection

[Diagram showing floor ID vs. DCR_{ij} for different scenarios]

[Diagram showing Imperial Valley Delta (sf = 2.4)]
Approach

3D model (Perform-3D)
- ASCE 41 “default” backbone curves
- Limited cyclic degradation (captured via ΔK)

2D model (OpenSees)
- IMK hinge properties
- Lignos and Krawinkler (2011) and NIST GCR 17-917-46v2 (2017)
Quantification of Building Seismic Performance Factors

Approach (2)

collapse ≡ 12.5 %

OpenSees models
Results

4-story

ELF

RSA

8-story

ELF

RSA

< 1%

5%

3%

19%
Discussion

Recall ASCE41 assessment results

<table>
<thead>
<tr>
<th>Building</th>
<th>Design Approach</th>
<th>Nonlinear Static Procedure</th>
<th>Nonlinear Dynamic Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RBS connection</td>
<td>Column</td>
</tr>
<tr>
<td>4-Story</td>
<td>ELF</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td></td>
<td>RSA</td>
<td>×</td>
<td>Pass</td>
</tr>
<tr>
<td>8-Story</td>
<td>ELF</td>
<td>Pass</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>RSA</td>
<td>Pass</td>
<td>×</td>
</tr>
</tbody>
</table>

Why the difference? (besides component vs. system level assessment)
Discussion (2)

Differences between P3D model and OpenSees model from a subassembly perspective

(a) Perform-3D Model

- Column Plastic Hinge
- Beam Plastic Hinge
- Reduced Beam Moment of Inertia
- 2.5x End Zone Stiffness

(b) OpenSees Model

- Column Plastic Hinge
- Beam Plastic Hinge
- Reduced Beam Moment of Inertia
- Panel Zone

Reduced Beam Moment of Inertia:
- $a = 121$ mm
- $b = 406$ mm
- $c = 57$ mm
Discussion (3)

Total Displacement = Elastic Displacement + Inelastic Displacement + Panel Zone Displacement

(a) (b) (c) (d)

Perform-3D and OpenSees

Base Shear (kN) vs. Drift Ratio

-600 -400 -200 0 200 400 600

-0.1 -0.05 0 0.05 0.1
Sensitivity Study

Vary modal damping: ~0, 1, 2, and 3%

Modify nonlinear hinges
 ◦ Elastic-plastic
 ◦ Vary backbone curve parameters +/- σ
 ◦ Capture effects of composite slab using recommendations from ATC 114 (NIST GCR 17-917-46v2)
 ◦ Predictive equations vs calibrated to experimental results (Gilton and Uang, 2002)
Sensitivity Study (2)

Baseline

ep2

ep3

composite slab

zeta = 2 %

zeta = 1 %

zeta ~ 0%

minus 30 %

panel zone
Conclusions

A suite of code-designed steel moment frames failed to pass an ASCE 41 assessment

A FEMA P695 influenced IDA indicates
 ◦ 3 out of 4 of the buildings meet the intent of the building code
 ◦ 8-story RSA frame is OK assuming 20% is acceptable for a single building

How do the nonlinear modeling choices effect results?
 ◦ Assumed damping (~small influence)
 ◦ Simplified model (~larger influence for this case)
 ◦ Composite slab (~larger influence -> P(C|MCE) reduced by almost 2)
 ◦ +/-30% change in backbone (~small influence)

Final thought: some improvements have been in ASCE 41-17, but there is still room for more.
Thanks, questions?

contact: speicher@nist.gov