Rigid Body Response & Performance Based Design of Seismically Isolated Structures

O. Escalona1, J. Wong2

1Graduate Student Researcher, School of Engineering, San Francisco State University
2Assistant Professor, School of Engineering, San Francisco State University

Tuesday, June 26
Rigid Body Approach

Source: Kulkarni and Jangid
Model Description

5-story Steel Moment Frame Building

Lead Plug Rubber Bearings

Source: Buckle
Flexible vs Rigid Structure
Effects of Structural Stiffness

5 STORY ISOLATED BUILDING SUBJECTED TO EARTHQUAKE 1 - ACCELERATION TIME HISTORY

<table>
<thead>
<tr>
<th></th>
<th>SMFRS Shear Frame (Optimized Design)</th>
<th>SMFRS Non-Shear Frame (Optimized Design)</th>
<th>% Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Top Floor Displacement (m)</td>
<td>8.2</td>
<td>11.3</td>
<td>32%</td>
</tr>
<tr>
<td>Max Mid Floor Displacement (m)</td>
<td>7.4</td>
<td>7.4</td>
<td>0%</td>
</tr>
<tr>
<td>Max Top Floor Acceleration (g)</td>
<td>0.84</td>
<td>0.60</td>
<td>34%</td>
</tr>
<tr>
<td>Max Mid Floor Acceleration (g)</td>
<td>0.84</td>
<td>0.86</td>
<td>2%</td>
</tr>
</tbody>
</table>

Note:
1. Original Design Refers to Original Calculations (No-SMFRS Designed)
2. Optimized Design Refers to SMFRS non-isolated Optimized design per current bld codes
Conclusions

- Rigid body approach is an excellent means of getting preliminary results.
- Time history results are great but variations in spectra also need to be considered in determining methods of approach.
- Idealizations in structural flexibility can also lead to variations in response with some areas of over- or under-estimation.
- More complex modeling is needed to better understand the relationship between floor responses and PBD of isolation.
Come see my Poster!

Today’s Poster Session:

- **Time**: 5:15 – 7:00 pm
- **Room**: Pasadena (Exhibit Hall)
- **Poster location**: Number 141