Xiang Wang
Post-doctoral Researcher
Dept. of Structural Engineering
Univ. of California, San Diego

System Identification of a Mid-rise CFS Building Subject to Earthquake and Fire Tests
Test Building & Test Protocol

Test Building

- Plan layout: 10.4 m × 7.3 m; Story height: 3.1 m
- Site Location: **Downtown LA** \((S_{DS} = 1.5 \text{ g}, \ S_{D1} = 0.8 \text{ g}) \)
- Lateral load resisting system: **CFS shear walls**
 - Corridor walls: primary lateral resisting elements
 - Exterior walls: resist transverse & torsional loads

Test Protocol

- **Fire Test Phase**
 - Test Day 1
 - Test Day 2
 - Test Day 3
 - Test Day 4

- **Pre-Fire EQ Test Phase**
 - MCE
 - SLE

- **Post-Fire EQ Test Phase**
 - MCE
 - SLE

![Diagram](image-url)
White Noise (WN) Base Excitation Tests

- Amplitude: 1.5% g & 3.0% g RMS
- Duration: 3 minutes
- Before & after each EQ test
 - a total of 20 WN tests
- Analysis Method: Deterministic-stochastic Subspace Identification (DSI) method
 - 1 input & 24 output channels

Roof Accelerations during WN test
Identified Modes – Reference State

Six Vibration Modes (1.5% g RMS)

- **Mode 1-T:** $f = 2.2$ Hz; $\xi = 5.8\%$
- **Mode 1-L:** $f = 3.9$ Hz; $\xi = 5.2\%$
- **Mode 1-To:** $f = 4.3$ Hz; $\xi = 4.2\%$
- **Mode 2-T:** $f = 7.6$ Hz; $\xi = 5.6\%$
- **Mode 2-L:** $f = 12.5$ Hz; $\xi = 3.3\%$
- **Mode 2-To:** $f = 13.5$ Hz; $\xi = 2.2\%$
Identified Frequencies & Damping – WN Tests

Amplitude Dependency
As excitation amplitude increases
- frequency drops
- damping rises

Damage Dependency
As damage progresses
- frequency drops
- damping rises

- **Frequency (Hz)**
 - **Mode 1–L**
 - **Mode 2–L**

- **Damping (%)**
 - **Mode 1–L**
 - **Mode 2–L**

- **Samples**: S0, S3, S4, S5, S6, S7, S8, S9

- **Excitation Amplitude**: 1.5% g RMS, 3.0% g RMS
Frequency Loss Evolution vs Damage Progression

\[\text{Freq. Loss} = \left(\frac{f_{ref} - f}{f_{ref}} \right) \times 100\% \]

- Remained small (< 10%) during service level (SLE) events (S0–S4)
- Increased substantially (~50%) following design (DE) event (S6)
- Continued to increase (~60%) following MCE test (S7)
- Remained stable following fire tests & post-fire SLE test (S8–S9)

Frequency Loss Evolution correlates well with **Damage Progression**

Mode 1-L

- 1.5% g RMS
- 3.0% g RMS

Mode 2-L

- 1.5% g RMS
- 3.0% g RMS

Post-MCE

- Minor (Cosmetic)
- Moderate (Repairable)

Post-SLE

- Moderate (Repairable)
Acknowledgements

- Research Collaborators from UCSD & WPI
 - Tara Hutchinson (PI), Brian Meacham (Co-PI)

- Granting Agencies

- Industrial Sponsors & NHERI@UCSD staff