FINITE ELEMENT STUDY ON THE SEISMIC PERFORMANCE OF NONSTRUCTURAL PARTITION WALLS

By:

Esmaeel Rahmani, PhD, PE
MiTek USA Inc

Los Angeles, California \ June 25-29, 2018
Research Contributors

K. N. Toosi University of Technology
Siavash Soroushian
Hamidreza Salmasi Javid

MiTek USA Inc
Esmaeel Rahmani

University of Nevada, Reno
Manos Maragakis
Outline

1. Introduction
2. The Proposed Analytical Model of Partition Walls
3. Validation of the Proposed Analytical Model
4. Fragility Analysis
5. Summary and Conclusions
Cold-Formed Steel-Framed Gypsum Partition Walls

- Stud – Top Track Connection
- Stud-to-Bottom Track Screw Connection
- Gypsum-to-Stud Screw Connection
- Top Track-to-Concrete PAF Connections
- Track-to-Concrete PAF Connection

Studs

Tracks

Gypsum Boards
Partition Damage During Past Experiments

UB Experiments, Davies et. al., 2011

- Damage in transverse wall top track
- Damage to Boundary Studs
- Tearing along top-track fastener
- Hinge forming in studs (commercial)
- Buckling of diagonal braces

UNR Experiments, Rahmanishamsi et. al., 2014

- Damage in gypsum-to-stud connections
- Hinge forming in field studs
- Damage to the top track of return walls
- Damage at the partition wall corners
Partition Walls Model, In-Plane & Out-of-Plane

- Gypsum-to-Stud Connection Hysteretic Spring
- Stud-to-Track Connection Hysteretic Spring
- Gypsum-to-Stud Contact Element
- Stud Flexural Hysteretic Spring
- Gypsum-to-Gypsum Contact Element
- Track-to-Concrete Connection Hysteretic Spring
- Stud Element
- Gypsum Board Element
- Concrete Node
- Track Element
- Node
Component-Level Experiments

- Six series of component-level experiments
- More than 140 monotonic and cyclic tests on the in-plane and out-of-plane behavior of connections with various properties.

Gypsum-to-Stud
- Screw
- Gypsum boards
- Top Stud
- Bottom Stud

Stud-to-Track
- Axial Load Cell
- Movable Grip
- Stationary Grip
- Stud

Track-to-Concrete, Tension Tests
- PAF
- Track
- Concrete Block

Track-to-Concrete, Shear Tests
- Track
- Concrete Block
- PAF
The “Pinching4” uniaxial material along with a "zeroLength" element (OpenSees)
Partition Walls Model, In-Plane & Out-of-Plane

- Gypsum-to-Stud Connection Hysteretic Spring
- Track-to-Concrete Connection Hysteretic Spring
- Stud-to-Track Connection Hysteretic Spring
- Gypsum-to-Stud Connection Hysteretic Spring
- Stud Flexural Hysteretic Spring
- Gypsum-to-Gypsum Contact Element
- Stud Element
- Gypsum-to-Concrete Contact Element
- Track Element
- Gypsum Board Element
- Concrete Node
- Stud Element
- Node
Validation of the Proposed Analytical Model

- Configurations 1, 2, 4, and 5 of the UB experiments.
- Configurations 1, 4 and 5 included three nominally identical specimens
- Configuration 5 no return wall

After Davies et. al., 2011
Validation – UB Specimens

Backbone Curve

- Displacement (mm)
- Force (kN)

Specimen 1
Specimen 2
Specimen 3
Analytical Model

Hysteresis Energy

- Cumulative Displacement (mm)
- Dissipated Energy (kN-mm)

Specimen 1
Specimen 2
Specimen 3
Analytical Model

Configuration 1

Configuration 4
Validation – UB Specimen 5
Fragility Analysis

Connection Damage States

Gypsum-to-Stud Connections

Track-to-Concrete Connections
Fragility Analysis

- To relate the local connection damage to wall overall behavior a specific wall with the same material and dimension was considered.
- Geometry and construction detailing was borrowed from UB experiment.
- 24 different scenarios were considered.
- The scenarios in terms of edge distance and construction quality.

After Davies et. al., 2011
Wall Backbone Curve and Damage States

GSC

- **CTC (Shear):**
 - Drift Ratio (%): -3 to 4
 - Force (Kips): -3 to 4
 - DS1 → DS2 → DS3

- **CTC (Tension):**
 - Drift Ratio (%): -3 to 4
 - Force (Kips): -3 to 4
 - DS1 → DS2 → DS3

STC

- **CTC (Shear):**
 - Drift Ratio (%): -3 to 4
 - Force (Kips): -3 to 4
 - DS1 → DS2 → DS3

- **CTC (Tension):**
 - Drift Ratio (%): -3 to 4
 - Force (Kips): -3 to 4
 - DS1 → DS2 → DS3
Connection Fragility Curves

GSC

CTC (Shear)

CTC (Tension)

STC
Partition Wall Fragility Curves

<table>
<thead>
<tr>
<th></th>
<th>Analytical Result</th>
<th>PACT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median Dispersion</td>
<td>Median Dispersion</td>
</tr>
<tr>
<td>DS1</td>
<td>0.51 0.15</td>
<td>0.5 0.4</td>
</tr>
<tr>
<td>DS2</td>
<td>0.88 0.19</td>
<td>1.0 0.3</td>
</tr>
<tr>
<td>DS3</td>
<td>2.07 0.12</td>
<td>2.1 0.2</td>
</tr>
</tbody>
</table>
Summary and Conclusions

- A detailed and yet computationally efficient analytical model of cold-formed steel-framed gypsum partition walls is proposed.
- The model can be used to predict force-displacement response and damage mechanisms of partition walls with various properties.
- Fragility curves of connections were developed.
- A new methodology was developed that can predict the overall seismic fragility of gypsum partition walls using analytical models.
Thank You!