Estimation of post-earthquake recovery on a university campus

N. Paul¹, I. Almufti², M. Mieler¹, J. Lee¹

¹Analyst, Arup, San Francisco, CA 94105
²Associate, Arup, San Francisco, CA 94105

Tuesday, June 26 – Friday, June 29
Shifting towards resilience

• Resilience is the capacity of an entity to adapt and recover from acute shocks or chronic stresses (Rockefeller Foundation)

• Building codes target life-safety, which does not have any bearing on functionality post-earthquake

• Consideration of functionality requires consideration of the people or entities within a building or campus
Recovery on a university campus

• **Metrics of interest**
 o Displacement & outmigration of students
 o Disruption of research & lecture

• **Return periods of interest**
 o Recovery was a particular focus at 200 year and 475 year events
 o At higher return periods, life-safety concerns were paramount
Stanford University in Loma Prieta 1989

PGA on campus = 0.3g

- Most buildings evacuated until post-earthquake inspection
 - Several residential buildings affected, displacing 1,000 students the night of the earthquake
 - Some students slept outdoors in tents, afraid to enter buildings

- All 400 buildings surveyed within 2 days
 - 242 with minor damage
 - 25 with significant damage (stayed closed afterwards)
Stanford University in Loma Prieta 1989
PGA on campus = 0.3g

• Restoration of residential space
 o Most students allowed back in dorms within 1 week, except for 150-200 that were provided alternate accommodation
 o All repairs to damaged residential buildings completed within 11 months

• Restoration of academic space
 o All classes cancelled day after the quake
 o Most classes resumed within 2-3 days inside buildings deemed safe
 o Lost 21 classrooms (14% of academic space), half of which were replaced by modular units
Case study: University of British Columbia

328 existing buildings
2/3 constructed prior to modern seismic codes
Portfolio risk assessment methodology

Seismic Retrofit Guidelines (SRG3)
- Determine earthquake scenario
- Simulate structural response

FEMA P-58 Loss Assessment
- Determine component damage
- Determine component losses

REDi™ Downtime Assessment for Buildings
- Estimate delays to repairs
- Estimate utility disruption
- Schedule building repairs
Predicted recovery of campus buildings

Interpretation of restoration curves

NIST Community Resilience Planning Guide Table

<table>
<thead>
<tr>
<th>Functional category (Occupancy)</th>
<th>200-year return period earthquake event</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Phase 1: Short-term (days)</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Classrooms</td>
<td>X</td>
</tr>
<tr>
<td>Research labs</td>
<td></td>
</tr>
<tr>
<td>Academic offices</td>
<td>X</td>
</tr>
<tr>
<td>Study spaces</td>
<td>X</td>
</tr>
<tr>
<td>Residential</td>
<td>X</td>
</tr>
<tr>
<td>Admin offices</td>
<td>X</td>
</tr>
</tbody>
</table>

X = Anticipated performance for 90% restoration
Predicted recovery of campus buildings

Median restoration curves by occupancy

Restoration Curve for Downtime to Functional Recovery

Classrooms
Research labs
Academic office
Study space & libraries
Residential (re-occupancy)
Residential (functional)
Admin office & central services
Total

Percentage of Square Footage Restored

Median Downtime to Functional Recovery (months)

0 months 6 months 1 year 1.5 years 2 years 2.5 years

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

200 year

475 year
Predicted recovery of campus buildings

Uncertainty in restoration curves

200 year

475 year
Utility disruption on campus
Methodology using fault trees
Utility disruption on campus

Best estimate results

<table>
<thead>
<tr>
<th>Earthquake Intensity Level</th>
<th>Electric Power</th>
<th>Water</th>
<th>Natural Gas</th>
<th>Thermal Energy</th>
<th>Sanitary Sewer*</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 year</td>
<td>1 day</td>
<td>2 months</td>
<td>2 - 6 days</td>
<td>0 days</td>
<td>4 days</td>
</tr>
<tr>
<td>475 year</td>
<td>2 - 3 days</td>
<td>2 - 2.5 months</td>
<td>1 - 2 weeks</td>
<td>0 days</td>
<td>6 days</td>
</tr>
</tbody>
</table>

Indicates the time to repair sewer pipe breaks. The sanitary system will be unusable as long as water is disrupted, which will almost always govern.
Student population vulnerability

Number of students (living on campus) displaced over time

- **1 day**: 12,000
- **3 days**: 12,000
- **1 week**: 10,000
- **1 month**: 8,000
- **3 months**: 6,000
- **6 months**: 4,000
- **1 year**: 2,000

Inspection of buildings
- 200 year
- 475 year

Students likely to outmigrate
Next steps

• Refinement of structural response predictions

• Further research of human factors
 o Will dormitories be occupied prior to complete functional recovery?
 o At what point does a displaced student decide to transfer university?
 o At what extent of a given damage type will a building inspect red-tag?

• Incorporation of mitigation measures
 o Will classes resume in temporary trailers?
 o Can some classes move to undamaged buildings?
Questions?