Achieving Resilient Water Networks: Experimental Performance Evaluation

Brad P. Wham, Blake A. Berger, Chalermpat Pariya-Ekkasut, Thomas D. O’Rourke, Harry E. Stewart, Tim Bond, Christina Argyrou

Presenting Author:

Brad P. Wham, PhD
Research Faculty & Manager
Center for Infrastructure, Energy, and Space Testing
Civil, Environmental, and Architectural Engineering
University of Colorado Boulder
ACHIEVING RESILIENT WATER NETWORKS: EXPERIMENTAL PERFORMANCE EVALUATION

Outline

- System vulnerability to ground movement
- Seismic Design of Pipelines
- Hazard Resilient Systems
 - Axial response
 - Lateral response
- Fundamentals of Performance Evaluation
Horizontal Ground Strain: LIDAR Measurements
Pipeline Performance Classification

<table>
<thead>
<tr>
<th>Parameter (+ and -)</th>
<th>Class</th>
<th>Performance Level*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial Strain</td>
<td>Continuous Pipe</td>
<td>Segmented Pipe</td>
</tr>
<tr>
<td>ε_1</td>
<td>0.01% up to 0.1%</td>
<td>0.01% up to 0.1% of L</td>
</tr>
<tr>
<td>ε_2</td>
<td>0.1% up to 0.5%</td>
<td>0.1% up to 0.5% of L</td>
</tr>
<tr>
<td>ε_3</td>
<td>0.5% up to 1%</td>
<td>0.5% up to 1% of L</td>
</tr>
<tr>
<td>ε_4</td>
<td>1% or greater</td>
<td>1% or greater of L</td>
</tr>
</tbody>
</table>

Curvature / Joint Deflection

<table>
<thead>
<tr>
<th>Parameter (+ and -)</th>
<th>Class</th>
<th>Performance Level**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curvature</td>
<td>Continuous Pipe (Radius of Curvature R)</td>
<td>Segmented Pipe (Joint Deflection Angle δ)</td>
</tr>
<tr>
<td>ρ_1</td>
<td>$R > 382'$</td>
<td>$\delta < 3$ degrees</td>
</tr>
<tr>
<td>ρ_2</td>
<td>$229' < R < 382'$</td>
<td>$3 \leq \delta < 5$ degrees</td>
</tr>
<tr>
<td>ρ_3</td>
<td>$143' < R < 229'$</td>
<td>$5 \leq \delta < 8$ degrees</td>
</tr>
<tr>
<td>ρ_4</td>
<td>$\leq 143'$</td>
<td>$\delta \geq 8$ degrees</td>
</tr>
</tbody>
</table>

Joint Resistance Force*

<table>
<thead>
<tr>
<th>Parameter (+ and -)</th>
<th>Class</th>
<th>Performance Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint Resistance</td>
<td>Continuous Pipe</td>
<td>Segmented Pipe</td>
</tr>
<tr>
<td>Φ_2</td>
<td>0.5σ_A up to 0.75σ_A</td>
<td>0.15σ_A up to 0.35σ_A</td>
</tr>
<tr>
<td>Φ_3</td>
<td>0.75σ_A up to σ_A</td>
<td>0.35σ_A up to 0.5σ_A</td>
</tr>
<tr>
<td>Φ_4</td>
<td>σ_A</td>
<td>0.5σ_A up to σ_A</td>
</tr>
</tbody>
</table>

L is the typical joint spacing in feet (commonly the length of a standard pipe segment)

σ_A is the pipe material yield strength in psi

A is the cross-sectional area of the pipe in square inches

Davis & Wham, 2018

Resilient Water Network Performance Evaluation | Brad P. Wham
Continuous pipelines [HDPE, steel, insitu liners]
axial elongation of pipe barrel

(Wham, et al., 2017)
Hazard Resistant Pipeline Systems: Axial Response

Continuous pipelines [HDPE, steel, in situ liners]
Axial elongation of pipe barrel

Segmented Pipelines [ERDIP, restrained ductile iron,]
Axial movement at the joint- compressive/tension displacement
Hazard Resistant Pipeline Systems: Axial Response

Continuous pipelines [HDPE, steel, in situ liners]
Axial elongation of pipe barrel

Segmented Pipelines [ERDIP, restrained ductile iron,]
Axial movement at the joint - compressive/tension displacement

Hybrid Pipeline Systems

JFE Wave Feature

(Wham, et al., 2016)
Hazard Resistant Pipeline Systems: Axial Response

Continuous pipelines [HDPE, steel, insitu liners]
axial elongation of pipe barrel

Segmented Pipelines [ERDIP, restrained ductile iron,]
Axial movement at the joint- compressive/tension displacement

Hybrid Pipeline Systems

JFE Wave Feature

(Wham, et al., 2016)
Hazard Resistant Pipeline Systems: Lateral Response

Continuous Pipe

Segmented Pipe

Resilient Water Network Performance Evaluation | Brad P. Wham
Hazard Resistant Pipeline Systems: Lateral Response

Continuous Pipe

Segmented Pipe

R

θ
Fundamentals of Performance Evaluation

• General Evaluation Considerations

 - Material Characterization
 - Design of Loading System
 - Stiffness
 - Specimen Size
 - Boundary Conditions
 - Internal Pressure
 - Limit States
 - Instrumentation (redundancy)
 - Number of Tests
Performance Evaluation: Full-scale Four-point Bending Test
Conclusions

• Need for seismic design guidelines for underground distribution systems
• Design predicated on realistic ground movement and system characteristics
• Requires meaningful product evaluation—providing consistent testing across materials/components
• Encourage new technologies
• Read the paper!

Thank You!