Assessing Seismic Safety of Concrete Moment Frames with High Strength Reinforcing Steel

Greg Deierlein & Kuanshi Zhong
Stanford University

Sponsors:
The Charles Pankow Foundation
The Concrete Reinforcing Steel Institute
The ACI Foundation’s Concrete Research Council

with contributions by:
D. To & J. Moehle (UC Berkeley), C. Slavin, D. Sokoli & W. Ghannoum (UT Austin/San Antonio), A. Lepape & R. Lequesne (KU), D. Kelly & R. Hamburger (SGH), A. Taylor (KPFF), D. Fields (MKA), et al.
1. Evaluate relative fracture risk and collapse safety of structural systems (higher grades vs. Grade 60)
2. Evaluate HS bar material (e.g., T/Y) and design criteria (s/db) for seismic design
3. Relate deformation demands in RC buildings to subassembly loading protocols

<table>
<thead>
<tr>
<th>Design/Behavior Parameter</th>
<th>Potential Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced Stiffness (EI_{eff})</td>
<td>Larger drifts and demands</td>
</tr>
<tr>
<td>Reduced Strain Hardening (T/Y ratio)</td>
<td>Strain localization</td>
</tr>
<tr>
<td>Lower bar cyclic fracture toughness</td>
<td>Earlier bar fracture</td>
</tr>
<tr>
<td>Potentially larger bar slenderness (s/db)</td>
<td>Buckle and post-buckle fracture</td>
</tr>
</tbody>
</table>

Tie spacing & buckling (Gr 80 #8) (Slavin & Ghannoum, 2016)
System Assessment Framework

RC System Analysis

- Cyclic hinge model (f_y, T/Y & s/db)
- Joint panels & gravity system
- IDA (44 FEMA P695 + 44 spectrally equivalent long-duration motions)

MCE Performance & Collapse assessment

Beam-Column RC member

- Fiber element model
- Translate drift history to rebar strain history

Reinforcement Fracture

- Fatigue-fracture model
- Estimate fracture potential based on cyclic strain demands

Non-simulated fracture mode

Ground acceleration

Time

Deformation history

Chord rotation (rad)

Time (sec)

Strain history

Nominal steel strain over 8-in gage

Time (sec)

Fracture index

Time (sec)
Bar Fracture Model

Bar Fracture Index – a metric as a function of rebar cumulative plastic strain

- Base model: Manson-Coffin
- Involved variables: f_y, T/Y, s/d_b, ε_f
- Calibrate a_f and C_f to 45 monotonic tension tests + 206 low-cycle fatigue tests (courtesy by Prof. Ghannoum)

$$FI = f\left(\varepsilon_{p,i}\right) = \sum_{i=1}^{N}\left(\frac{\varepsilon_{p,i}}{C_f}\right)^{1/a_f}$$

Material Constant

$$\alpha_f = 0.729 - 0.075 \cdot \left(\frac{f_y}{60\,ksi}\right) + 0.038 \cdot (s/d_b) - 0.217 \cdot (T/Y)$$

Prediction Equation

$$C_f = 0.5^{a_f} \cdot \left(\varepsilon_f - \frac{f_y}{E_s}\right)$$

Bar Fatigue-Fracture Fragility

P (fracture | FI)
median FI = 1.0
dispersion = 0.5
Validation of Bar Fracture Model

1. Simulated history is comparable to recorded strains
2. **Average FI ~ 1.0** at reported fracture point
FEMA P695 archetype frame
SDC D_{max} (S_{M1}=0.9g) Gr. 60, s/d_k = 3.5-4

Expand Designs:
- 3 grades (Gr. 60, 80, and 100)
- 3 tie spacings (4d_{b}, 5d_{b}, and 6d_{b})
- 3 T/Y ratios (e.g., 1.1, 1.2, and 1.3 for Gr. 100 bars)

Periods:
- T_{code} = 3.4 sec
- T_{60} = 2.7 sec, T_{80} = 3.0 sec (0.8k_o), T_{100} = 3.2 sec (0.7k_o)

Nonlinear Dynamic Analysis Evaluations:
1. FEMA P695 – Standardized Collapse Safety (SDC D_{max})
2. Hazard Consistent IDA

- Site: San Francisco (Site Class D, S_{MCE}=0.34g)
- SDR_{max} increases as grade increases
 - Gr 60: 0.025
 - Gr 80: 0.027 (+8%)
 - Gr 100 0.028 (+12%)
Translate Drift Demands in Frame to Fracture Index

1. Frame NLRHA

2. Random Drift History

3. Beam/Column Fiber Analyses

4. Rebar Strain History

5. Rain Flow Fatigue Counting

6. Fracture Index
Non-Simulated Fracture Collapse Modes

- $F_{I_{\text{max}}}$: the fracture index of the worst beam/column
- Evaluated up to the highest intensity before collapse ($SDR_{\text{max}} > 0.1$)
- Providing statistics about fracture at MCE_R intensity levels
- Map non-simulated fracture failure modes (FEMA P695)

Maximum Fracture Index in Columns

IDA curves (Simulated and Non-Simu. Failure Modes)

- $MCE_R = 0.34g$
- Median $F_{I} \sim 0.3$
- $P(\text{fracture}) \sim 1\%$

- Collapse due to premature fracture
- Collapse without rebar fracture
- Collapse due to premature fracture

Non-fracture collapse
Collapse w/ fracture
Collapse Probability
\(P(\text{frac.}) = \int f_{\text{demand}}(x) \times F_{\text{capacity}}(x) \, dx \)

Observed Trends
- Hardening ratio ↓ \(\rightarrow\) fracture probability ↑
- Tie spacing ↑ \(\rightarrow\) fracture probability ↑

Suggested Limits:
- Median \(T/Y\) >= 1.2
- Tie spacing \(s/db\) <= 5
Total Collapse Probability

- Comparable collapse safety ($T/Y \geq 1.2 \ s/db \leq 5$)
- $T/Y \downarrow \rightarrow \text{collapse probability} \uparrow$
- $s/db \uparrow \rightarrow \text{collapse probability} \uparrow$

Gr 60 $T/Y = 1.3 \ s/db = 6$

Gr 80 $s/db = 5 \ T/Y = 1.3$

Gr 80 $s/db = 5 \ T/Y = 1.4$

Gr 100 $T/Y = 1.2 \ s/db = 4$

Gr 100 $T/Y = 1.2 \ s/db = 5$

Gr 100 $s/db = 6 \ T/Y = 1.2$

Benchmark: 7.1%

$T/Y \downarrow \rightarrow P(\text{col.}) \uparrow$

$s/db \uparrow \rightarrow P(\text{col.}) \uparrow$

Collapse probability under MCE$_R$
20-story vs. 4-story

20-story (27 archetypes)

- **Period**: 2.6 ~ 3.2 sec
- **Drift Demand (MCE)**: 2.5% ~ 2.8%
- **Fracture Probability (MCE)**: 1.4% ~ 3.0%
- **Collapse Probability (MCE)**: 7.1% ~ 11.6%
- **Fracture-Induced Collapse Probability (MCE)**: 0.4% ~ 2.0%

4-story (13 archetypes)

- **Period**: 1.2 ~ 1.5 sec
- **Drift Demand (MCE)**: 3.0% ~ 3.2%
- **Fracture Probability (MCE)**: 5.8% ~ 8.3%
- **Collapse Probability (MCE)**: 5.3% ~ 10.6%
- **Fracture-Induced Collapse Probability (MCE)**: 1.0% ~ 3.0%

- **Shorter period** → more reversal cycles
- **Higher fracture risk in short-period frames**
- **Higher fracture-induced collapse risk in short-period frames**
• 4-story frame case: Gr 100 bars with T/Y = 1.2, s/d_b = 5.

• Lab tested curves have a good coverage on the demand curve for both the beam and column.

• The demand is slightly over the tested envelope when SDR>3%.
Conclusive Remarks

1. Under MCE_R, high-strength reinforcement (HSR) frames:
 - higher drift demands
 - higher collapse probability
 - still acceptable

2. Bar fracture potential is generally small (<10% under MCE_R), but sensitive to
 - strain demands (larger drifts; lower T/Y ratios)
 - bar buckling (s/d_b)
 - fatigue fracture resistance

3. Suggestions on material and design criteria for HSR frames
 - Median $T/Y \geq 1.2$
 - $s/d_b \leq 5$

4. Low-rise frames can be more vulnerable (period matters)

Ongoing studies

1. *Relate cyclic deformation demands in buildings to subassembly loading protocols
2. Additional archetypes: shear walls, bridge columns, …
Assessing Seismic Safety of Concrete Moment Frames with High Strength Reinforcing Steel

Thank you! Questions & Comments~

Greg Deierlein & Kuanshi Zhong
Stanford University

Sponsors:
The Charles Pankow Foundation
The Concrete Reinforcing Steel Institute
The ACI Foundation’s Concrete Research Council

with contributions by:
D. To & J. Moehle (UC Berkeley), C. Slavin, D. Sokoli & W. Ghannoum (UT Austin/San Antonio), A. Lepape & R. Lequesne (KU), D. Kelly & R. Hamburger (SGH), A. Taylor (KPFF), D. Fields (MKA), et al.