Influence of topographic irregularities on the amplitude and phase of strong ground motions

M. G. DURANTE1, S. J. BRANDENBERG2, E. AUSILIO3 AND P. ZIMMARO4

1Postdoctoral Scholar, Dept of Civil and Environmental Engineering, University of California, Los Angeles
2Professor, Dept of Civil and Environmental Engineering, University of California, Los Angeles
3Professor, Dept of Civil Engineering, University of Calabria, Cosenza, ITALY
4Research Scientist and Lecturer, Dept of Civil and Environmental Engineering, University of California, Los Angeles

Tuesday, June 26 – Friday, June 29
OBJECTIVES — SITE

- Evaluation of the influence of topographic irregularities on the amplitude and phase of ground motions using OpenSees

- 19 spans and 18 piers
- Length: around 1100 meters
- Max width: around 10 meters
- Maxi height: 120 meters close by the canyon
2D OpenSees model:
- plain strain condition;
- Four-noded, bilinear, isoparametric finite elements with 4 point of integration each;
- Modified Lysmer-Kuhlemeyer boundary conditions;
- SV wave propagation (horizontal equivalent nodal forces at base);
- Ideal mesh dimension for the wave transmission (< 1/10 λ).

Model Verification soil deposit (using ad-hoc Boundary Element Method - BEM):

- Homogeneous Soil ($V_s = 500$ m/s, $\nu = 0.33$);
- Dimensionless frequency: $\eta = \frac{\omega B}{\pi V_s} = \frac{2Bf_{\text{input}}}{V_s}$

<table>
<thead>
<tr>
<th>f_{input} [Hz]</th>
<th>η</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25</td>
<td>0.5</td>
</tr>
<tr>
<td>2.5</td>
<td>1.0</td>
</tr>
<tr>
<td>3.75</td>
<td>1.5</td>
</tr>
</tbody>
</table>

$U_x = \text{horizontal component of the peak ground surface acceleration;}$
$U_y = \text{vertical component of the peak ground surface acceleration.}$
SEISMIC RESPONSE

<table>
<thead>
<tr>
<th>Event ID</th>
<th>Event (station)</th>
<th>T_m (sec)</th>
<th>η_m</th>
<th>D_{5-95} (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID1</td>
<td>M7.6 Izmit, 1999 - (IST180)</td>
<td>0.44</td>
<td>0.91</td>
<td>37.6</td>
</tr>
<tr>
<td>ID2</td>
<td>M6.2 Morgan Hill, 1984 - (Gilroy Array #1)</td>
<td>0.22</td>
<td>1.82</td>
<td>9.5</td>
</tr>
<tr>
<td>ID3</td>
<td>M6.9 Loma Prieta, 1989 - (LGP000)</td>
<td>0.50</td>
<td>0.80</td>
<td>12.8</td>
</tr>
<tr>
<td>ID4</td>
<td>M6.7 Northridge, 1994 - (NSC52)</td>
<td>0.63</td>
<td>0.64</td>
<td>26.7</td>
</tr>
</tbody>
</table>

5% structural damping ratio

$H = 3b$
$L/H=4$

$A_h = \frac{a_h}{a_{h,ff}}$
$A_v = \frac{a_v}{a_{h,ff}}$

$a_h, a_v = PGA_h$ and PGA_v at each point of the ground surface; $a_{h,ff} = $ free-field PGA_h.

- When η_m decreases A_h and A_v increase;
- Phase shift caused by combination of topographic irregularities (reflection + refraction) and wave passage effect.
Thank you and...

...see you at the poster session!

Poster location: Location 074
Poster Session Time: 5:15 PM - 7:00 PM
Poster Session Location: Pasadena Hall (Exhibit Hall) - One Level Below Lobby