Improvement of the Cyclic Bending Behavior of HSS Members Through Foam Fill

C. Flores Carreras1, L. Alfaro1, D. Wei1, and J. McCormick2

1Graduate Student Researcher
2Assistant Professor

1,2Dept. of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109-2125
Agenda

- Motivation and Objectives
- Polyurethane-Based Foam
 - Characterization of Mechanical Properties
- Experimental Test Setup
 - Test Specimens
 - Instrumentation
- Experimental Results
 - Filled to Unfilled Comparison
 - Hysteretic Behavior
 - Energy Dissipation
Hollow Structural Sections

- HSS have various favorable properties for seismic applications:
 - Good compressive, bending, and torsional strength
 - High strength to weight ratio
 - Provide voids that can be easily filled

- Previous work shows potential for HSS-based seismic moment frames:
 - HSS bending studies
 - HSS-to-HSS seismic moment connection development
Motivation behind the Research

• Steel moment frames rely on the formation of plastic hinges to dissipate seismic input energy.

• Local buckling in the plastic hinge region can severely limit the performance of steel moment frames.

• A lightweight polyurethane-based foam fill can help inhibit local buckling of HSS members and provide added energy dissipation capacity.
Research Objectives

- Better understand the behavior of a foam-filled HSS member.
- Determine potential benefits of a polyurethane-based foam fill in steel moment frames.
- Address effectiveness of a foam fill with regards to potentially relaxing width-thickness and depth-thickness requirements.
Polyurethane Foam

- Polyurethane-based expanding foam that is unique to structural engineering applications.
- High strength to weight ratio and energy absorption properties.
- Consists of two liquid components that are mixed together.

Manufacturer Reported Mechanical Properties – 256 kg/m³

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel Compressive Strength</td>
<td>4.00 MPa</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>3.10 MPa</td>
</tr>
<tr>
<td>Shear Strength</td>
<td>1.59 MPa</td>
</tr>
<tr>
<td>Flexural Strength</td>
<td>5.17 MPa</td>
</tr>
<tr>
<td>Expansion Rate (at 26.7°C)</td>
<td>4.0 x Vol.</td>
</tr>
</tbody>
</table>

Properties from: www.uscomposites.com/foam.html
Characterization of Mechanical Properties

- 38.1 mm cube specimens tested under monotonic and increasing cyclic compression.
- Overall behavior categorized by three phases: initial elastic phase, intermediate plateau due to crushing, and stiffening phase due to consolidation after crushing.
Test Specimens

- The different section sizes allow different width-thickness and depth-thickness ratios to be considered.
- For each section size, an empty and polyurethane-based foam filled beam is considered.

Relevant HSS Member Properties

<table>
<thead>
<tr>
<th>HSS Member</th>
<th>t</th>
<th>b</th>
<th>h</th>
<th>A</th>
<th>Expected M_p</th>
<th>Theoretical L_p</th>
<th>b/t</th>
<th>h/t</th>
</tr>
</thead>
<tbody>
<tr>
<td>203.2x152.4x6.4</td>
<td>6.4</td>
<td>152.4</td>
<td>203.2</td>
<td>3980</td>
<td>123</td>
<td>247.7</td>
<td>22.8</td>
<td>31.3</td>
</tr>
<tr>
<td>203.2x203.2x6.4</td>
<td>6.4</td>
<td>203.2</td>
<td>203.2</td>
<td>4580</td>
<td>149</td>
<td>121.4</td>
<td>31.3</td>
<td>31.3</td>
</tr>
<tr>
<td>254.0x152.4x6.4</td>
<td>6.4</td>
<td>152.4</td>
<td>254.0</td>
<td>4580</td>
<td>172</td>
<td>271.5</td>
<td>22.8</td>
<td>39.9</td>
</tr>
</tbody>
</table>

Meet moderately ductile slenderness limits.
Experimental Test Setup

- Lateral displacements are applied through a slotted hole connection at the free end.

- Foam length spans 1.5 times the theoretical plastic hinge length of the HSS, starting at the fixed end.

- Loading protocol follows the AISC Seismic Provisions for prequalifying connections for seismic frames.
Instrumentation

- Multiple strain gauges on the top and bottom flanges of the beams.

- Grid of optical tracking markers is used to measure the displacement and rotation of the specimen.

- Whitewash is applied to the back and sides of the HSS to visualize yielding.
Experimental Test Results

- All specimens experience the onset of local buckling and moment capacity degradation.
- At the 0.06 rad. cycle, the extent of the local buckling is restrained in the foam-filled beams.
- Typically, the filled specimens experience less tearing by the end of the test.

Unfilled HSS 254.0x152.4x6.4

Filled HSS 254.0x152.4x6.4
Hysteretic Behavior

- Foam has little influence on maximum strength, initial stiffness, and unloading stiffness.
- The foam fill leads to less degradation of the moment capacity with continued cycling.
- Clear connection between element slenderness ratio and degree of influence of the foam fill.
Hysteretic Behavior (cont.)

Moment vs. Rotation – HSS 203.2x203.2x6.4

Moment vs. Rotation – HSS 254.0x152.4x6.4
Hysteretic Behavior (cont.)

Moment vs. Rotation – HSS 203.2x203.2x6.4

Moment vs. Rotation – HSS 254.0x152.4x6.4
Energy Dissipation

- Clear increase in energy dissipation due to foam fill.
- The foam fill allows for larger moments to be maintained, leading to large hysteresis curves and more dissipated energy.
- At large rotations, the foam starts to crush and dissipates energy.
Energy Dissipation (cont.)

Dissipated Energy vs. Rotation
HSS 203.2x203.2x6.4

Dissipated Energy vs. Rotation
HSS 254.0x152.4x6.4
Conclusions

- HSS beams filled with a polyurethane-based foam exhibit less moment capacity degradation and dissipate more energy.

- The foam fill helps inhibit local buckling in the member.

- Results suggest a foam infill can potentially lead to a relaxation of current slenderness requirements.
Acknowledgements

• National Science Foundation
 • CMMI – 1334272
 • CMMI – 1350605

• Students
 • Carolyn McCann
Thank You