Seismic performance of RC beams focusing on failure mode and crack evaluation

Sam Kono, J. Setiawan, T. Obara, M. Del Zoppo, H. Watanabe, D. J. Mukai

Tokyo Inst. of Technology, Japan
Univ. of Naples Federico II, Italy
Building Research Institute, Japan
Univ. of Wyoming, USA
Background and Objectives

Using 685MPa shear rebars, the following behavior was studied.

- Validation of capacity using code equation (AIJ 1999 guidelines)
 - Q_f (Flexural capacity)
 - Q_{su} (Shear capacity)
 - Q_{bu} (Bond capacity)

- Study on residual cracks
 - Shear cracks and shear deformation (AIJ 2004 guidelines)
Current design issues (Evolution of PBEE methodology)
Specimen configuration

Long. rebar SD590
Shear rebar SD685
Section of beams

#1, #2, #4, #5

#3

#6

#7, #8
Test Variables

<table>
<thead>
<tr>
<th>Number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>B x D (mm)</td>
<td>340 X 450</td>
<td>340 X 450</td>
<td>420 X 560</td>
<td>340 X 450</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f'c (MPa)</td>
<td>24.0</td>
<td>24.0</td>
<td>48</td>
<td>24</td>
<td>33</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Span L (mm)</td>
<td>1350</td>
<td>1350</td>
<td>2250</td>
<td>1350</td>
<td>1680</td>
<td>1800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M/QD</td>
<td>1.50</td>
<td>1.50</td>
<td>2.50</td>
<td>1.50</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long. Rebar</td>
<td>3+3-D25 SD590</td>
<td>3+3-D25 SD590</td>
<td>3+3-D25 SD590</td>
<td>3+3-D25 SD590</td>
<td>5+3-D25 SD590</td>
<td>3-D25 SD345</td>
<td>3-D25 SD345</td>
<td></td>
</tr>
<tr>
<td>Trans. Rebar</td>
<td>D10 @210</td>
<td>D10 @70</td>
<td>D10 @52.5</td>
<td>D10 @210</td>
<td>D10 @210</td>
<td>D10 @170</td>
<td>D10 @105</td>
<td>D10 @105</td>
</tr>
<tr>
<td>pw (%)</td>
<td>0.200</td>
<td>0.600</td>
<td>1.20</td>
<td>0.200</td>
<td>0.400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>(Shear) Standard</td>
<td>(Shear) Higher pw</td>
<td>(Shear) Highest pw</td>
<td>(Shear) Larger L/2D</td>
<td>(Shear) Higher f'c</td>
<td>(Shear) Larger BxD</td>
<td>(Bond) Standard</td>
<td>(Flexure) Higher f'c</td>
</tr>
</tbody>
</table>
Loading system

EAST ↔ + WEST

3000kN hydraulic jack

2200

Out-of-Plane Restrainer

4000kN hydraulic jack

Disp. Gauges

Moment Distribution

Specimen
Loading system
Shear force – drift relations

- **F’c=24MPa**
 - M/QD=1.5
 - Pw=0.2%
 - Qex/Qcal=1.24 Shear tens.

- **F’c=48MPa**
 - M/QD=2.5
 - Larger section
 - Pw=1.2%
 - Qex/Qcal=1.16 Shear tens.

- **Qmax**
- **Qsu**
- **Qfu**
- **Qcr**
- **Qecr**
- **fwy**

- **#1**
- **#2**
- **#3**
- **#4**
- **#5**
- **#6**
Capacity equations

<table>
<thead>
<tr>
<th>Failure mode</th>
<th>Capacity Equation</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum capacity</td>
<td>:[Q_u = \min(Q_{fu}, \max(Q_{cr}, \min(Q_{bu}, Q_{su})))]</td>
<td>(1)</td>
</tr>
<tr>
<td>Shear cracking</td>
<td>:[Q_{cr} = \phi \left(\sqrt{\sigma_T^2 + \sigma_0 \cdot \sigma_T} \right) b \cdot \frac{D}{K} \quad \sigma_T = 0.33 \sqrt{\sigma_B} \quad \text{(MPa)}]</td>
<td>(2)</td>
</tr>
<tr>
<td>Bond failure</td>
<td>:[Q_{bu} = j_e \sum (\tau_{bu}) + \left(v \sigma_B - \frac{2.5 \sum (\tau_{bu})}{\lambda b_e} \right) \frac{bD}{2} \tan \theta]</td>
<td>(3)</td>
</tr>
<tr>
<td>Shear capacity</td>
<td>:[Q_{su} = \min(Q_{su1}, Q_{su2}, Q_{su3})]</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>:[Q_{su1} = \mu \cdot p_{we} \cdot \sigma_{wy} \cdot b_e \cdot j_e + \left(v \cdot \sigma_B - \frac{5 \cdot p_{we} \cdot \sigma_{wy}}{\lambda} \right) \frac{b \cdot D}{2} \tan \theta]</td>
<td>(5)</td>
</tr>
<tr>
<td></td>
<td>:[Q_{su2} = \frac{\lambda \cdot v \cdot \sigma_B + p_{we} \cdot \sigma_{wy}}{3} \cdot b_e \cdot j_e]</td>
<td>(6)</td>
</tr>
<tr>
<td></td>
<td>:[Q_{su3} = \frac{\lambda \cdot v \cdot \sigma_B}{2} \cdot b_e \cdot j_e]</td>
<td>(7)</td>
</tr>
<tr>
<td>Flexure capacity</td>
<td>:[Q_{fu}]: computed with an in-house fiber model</td>
<td>(8)</td>
</tr>
</tbody>
</table>
Crack patterns

F'c=24MPa
M/QD=1.5
Pw=0.2%

Pw=0.2%

Pw=1.2%

M/QD=2.5
F'c=48MPa
Larger section
Shear crack width measurement
Coordinate conversion
Shear drift = \sum (W_h) \quad ??? \quad (No. 1)

\[W_h: \text{horizontal component of crack width} \]
Crack opening – drift relations (No.1)
Shear drift \(= \sum(W_h) \) (No. 1)

\[W_h: \text{horizontal component of crack width} \]
Shear drift = \(\sum(W_h) \) (No. 5)
Conclusions

Eight beam specimens were tested to see their seismic performance. The following conclusions were drawn.

✓ Mode of peak load deterioration and peak load were simulated with good accuracy using the 1999 AIJ design guidelines,

✓ Shear component of drift, δ_s^+, comprises of horizontal component of positive cracks under positive loading, $\sum_{i=1}^{n} W_{hi\,(blue)}^+$, and horizontal component of negative cracks under positive loading, $\sum_{j=1}^{m} W_{hj\,(red)}^+$.
Continuity of building functions using real scale five-story RC buildings

The experiment was conducted by NILIM and BRI. Tokyo Tech was one of three universities who collaborated with them.
Crack measurement

- Crack width
- Crack length
- Concrete spalling
Crack distributions

R=0.25%

R=0.5%

R=1%
Numerical model using FEM Program “FINAL”

Stress-Strain relations

Concrete (Comp.)
Modified Ahmad Model

Concrete (Tens.)
(Izumo Model)

Reinforcement
(Modified Menegotto–Pinto model)
FEM Results Base shear force – Roof drift relation

- Real base shear capacity: 0.45xWeight
- Design base shear capacity: 0.3xWeight
Flexural crack simulation

1. Spacing (Number of cracks)
 ◦ CEB–FIP Model Code

2. Width
 ◦ Use axial strain of FEM

3. Length
 ◦ Flexural analysis based on FEM
Flexural crack simulation

2. Width

Crack pattern at 1/400 (0.25%)
Corner column (Exp.)

Accumulation crack width (mm)

Peak
Residual

- 1/100 (FEM)
- 1/200 (FEM)
- 1/400 (FEM)

Total crack width

Crack width

w_{cr1} (mm)

$w_{cr1} + w_{cr2}$

$w_{cr1} + w_{cr2} + w_{cr3}$

$w_{cr1} + w_{cr2} + \ldots + w_{crn}$
Summary of Experiment and Simulation

Flexural crack

- 合計曲げひび割れ幅 (ピーク, 2014年度試験体)
 - 北柱 (FEM)
 - 北柱 (EXP)
 - 中柱北側袖壁 (FEM)
 - 中柱北側袖壁 (EXP)
 - 北梁下端 (FEM)
 - 北梁下端 (EXP)

Shear crack

- 合計せん断ひび割れ幅 (ピーク, 2014年度試験体)
 - 北柱 (FEM)
 - 北柱 (EXP)
 - 中柱北側袖壁 (FEM)
 - 中柱北側袖壁 (EXP)
 - 北梁下端 (FEM)
 - 北梁下端 (EXP)
Flexural crack simulation

1. Spacing

Crack spacing formula (CEB-FIP 1978)

\[s_{rm} = 2 \left(c_s + \frac{s_y}{10} \right) + k_1 k_2 \frac{d_{by}}{p_y} \]

- \(s_{rm} \) = mean crack spacing
- \(c_s \) = clear concrete cover
- \(s_y \) = maximum spacing between longitudinal bars
- \(k_1 \) = factor that takes into account bond properties of reinforcing bar (0.4 for deformed bars)
- \(k_2 \) = factor that takes into account strain gradient
- \(k_2 = 0.25(\varepsilon_1 + \varepsilon_2)/\varepsilon_1 \)
- \(\varepsilon_1 \) and \(\varepsilon_2 \) correspond to the largest and smallest concrete tensile strain
- \(d_{by} \) = longitudinal bar diameter
- \(p_y \) = ratio of the area of reinforcement effectively bonded to the concrete to the cross-sectional area

<table>
<thead>
<tr>
<th>Roof drift (%)</th>
<th>Cal. (189mm)</th>
<th>Exp. (Average)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.063%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.125%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Corner column at 1/400

Crack spacing

Cal. (189mm)

Exp. (Average)
Flexural crack simulation

2. Width

The crack width of the i-the crack, w_i, in a region from h_i to $S_{rm}+h_i$ is expressed as:

$$w_i = \int_{h_i}^{S_{rm}+h_i} \varepsilon_{zz} \, dz$$

Assumption: axial strain is caused by cracks but not concrete (concrete does not deform).
Flexural crack simulation

Axial strain distribution ε

Corner Column

Crack spacing

Accumulation crack width

$w_{cr} = \int_{0}^{s_{rm}} \varepsilon \, dy$

$L(mm)$

$\Sigma w_{cr}(mm)$

Accumulation

$w_{cr1} + w_{cr2}$

$w_{cr1} + w_{cr2} + w_{cr3}$

$w_{cr1} + w_{cr2} + \ldots + w_{crn}$