Seismic Performance of One-piece Pipe Pin Connections and Precast Rebar Hinges in Bridge Piers

A. Mehrsoroush1, M. Saiidi2, K. Ryan3

1Professional Bridge Engineer, Nevada Department of Transportation
2Professor, Dept. of Civil and Environmental Eng., University of Nevada, Reno
3Associate Professor, Dept. of Civil and Environmental Eng., University of Nevada, Reno

Tuesday, June 26 – Friday, June 29
Research Objectives

Development of Earthquake-resistant Precast Pier Systems for accelerated bridge construction in Nevada

- Conduct a comprehensive literature search on five types of novel precast connections.
- Develop a rating system for evaluation of different connection types (pin and moment connections).
- Investigate the seismic performance of precast connections in a two-column pier model.
Hinge Connection Types

Pipe Pin

Rebar Hinge

Clustered Bar Hinge

Mesneger Hinge

Freyssinet Hinge

Stone Hinge

Lead Joint Hinge

Steel Hinge
Two-column Pier Model Shake Table Test

Precast Columns:
- Dc=1’ 2” Octagonal Sec.
- Hc=5’ 1.75”
- S=7’ [2,134 mm]
- $\rho_l=1.23\%$ (10 #4)
- $\rho_s=1.81\%$ (#3 @ 2” pitch)
- ALI=6.8%

Precast Cap Beam:
- 1’ 10”×1’ 8”×11’

Precast Footing:
- 4’x1’ 9”x11’

Note: ALI=Axial Load Index; Dc=Column Diameter; Hc=Column Clear Height; S=Span; ρ_l=Longitudinal Steel Ratio; ρ_s=Transverse Steel Ratio
Pin Connection Details

Pipe Pin
- Corrugated Metal Pipe: 2\(\frac{2}{3}\)" x 0.5" [88x13]-16 Gauge, I.D.=12" [305]
- Debonded Bars: L=2" [51]
- High-strength Grout
- Precast Cap Beam

Rebar Hinge
- Corrugated Metal Pipe: 2\(\frac{2}{3}\)" x 0.5" [88x13]-16 Gauge, I.D.=12" [305]
- Isolated Pipe: L=2" [51], t=\(\frac{1}{2}\)" [13]
- High-strength Grout
- Precast Column

Column Section
- #3 Spiral: @ 2" [51]
- CC=0.75 [19]
- 10 #4 [Ø=13]
- CC=1.33 [36]

Pipe Section
- 4x4 Shear Studs: Ø=\(\frac{3}{8}\)" [10]
- L=2" [51]
- Infilled St. Pipe: O.D.=5" [127], I.D.=4\(\frac{1}{2}\)" [114]
Construction
Shake Table Test Setup

Mass Rig

Load Transfer Beam
Loading Protocol

1994 Northridge EQ, Sylmar Converter Station

<table>
<thead>
<tr>
<th>Run No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale Factor</td>
<td>0.1</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
<td>1.0</td>
<td>1.2</td>
<td>1.4</td>
</tr>
<tr>
<td>PGA (g)</td>
<td>0.092</td>
<td>0.185</td>
<td>0.369</td>
<td>0.554</td>
<td>0.738</td>
<td>0.923</td>
<td>1.108</td>
<td>1.292</td>
</tr>
<tr>
<td>% Dgn. Motion</td>
<td>18</td>
<td>35</td>
<td>70</td>
<td>105</td>
<td>140</td>
<td>175</td>
<td>210</td>
<td>245</td>
</tr>
</tbody>
</table>
Hysteresis Response

Displacement Ductility

<table>
<thead>
<tr>
<th>Drift Ratio (%)</th>
<th>Force (kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>12</td>
<td>60</td>
</tr>
<tr>
<td>14</td>
<td>70</td>
</tr>
<tr>
<td>16</td>
<td>80</td>
</tr>
</tbody>
</table>

Notes:
- $D_{y,1st} =$ First Yield Drift Ratio;
- $D_{y,eff} =$ Effective Yield Drift Ratio;
- $D_u =$ Ultimate Drift Ratio;
- $V_{max} =$ Maximum Base Shear;
- $\mu_d =$ Displacement Ductility

$D_{y,1st} = 0.71\%$
$D_{y,eff} = 1.05\%$
$D_u = 11.96\%$
$\mu_d = 10.9$
$V_{max} = 52.5$ kips
Summary of Test Results

<table>
<thead>
<tr>
<th>Run No.</th>
<th>SF</th>
<th>PGA (g)</th>
<th>T_n (sec)</th>
<th>DM (%)</th>
<th>D_max (in.)</th>
<th>Drift (%)</th>
<th>μ_d</th>
<th>V/D_max (kips)</th>
<th>D_r (in.)</th>
<th>Drift (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>0.110</td>
<td>0.233</td>
<td>27.1</td>
<td>0.06</td>
<td>0.09</td>
<td>0.1</td>
<td>9.82</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
<td>0.275</td>
<td>0.249</td>
<td>47.6</td>
<td>0.30</td>
<td>0.48</td>
<td>0.4</td>
<td>25.17</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>0.4</td>
<td>0.429</td>
<td>0.284</td>
<td>65.9</td>
<td>0.76</td>
<td>1.23</td>
<td>1.1</td>
<td>42.29</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>4</td>
<td>0.6</td>
<td>0.521</td>
<td>0.324</td>
<td>111.1</td>
<td>1.24</td>
<td>2.01</td>
<td>1.8</td>
<td>47.60</td>
<td>-0.36</td>
<td>-0.59</td>
</tr>
<tr>
<td>5</td>
<td>0.8</td>
<td>0.629</td>
<td>0.516</td>
<td>151.7</td>
<td>2.51</td>
<td>4.07</td>
<td>3.7</td>
<td>48.67</td>
<td>-0.08</td>
<td>-0.14</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0.682</td>
<td>0.604</td>
<td>179.8</td>
<td>4.13</td>
<td>6.69</td>
<td>6.1</td>
<td>51.86</td>
<td>0.08</td>
<td>0.13</td>
</tr>
<tr>
<td>7</td>
<td>1.2</td>
<td>0.741</td>
<td>0.653</td>
<td>203.0</td>
<td>6.41</td>
<td>10.30</td>
<td>0.4</td>
<td>50.70</td>
<td>1.74</td>
<td>2.82</td>
</tr>
<tr>
<td>8</td>
<td>1.4</td>
<td>0.863</td>
<td>0.699</td>
<td>225.2</td>
<td>9.51</td>
<td>15.40</td>
<td>14.0</td>
<td>30.32</td>
<td>6.71</td>
<td>10.87</td>
</tr>
</tbody>
</table>

Notes:
- D_{max} = Maximum Displacement
- D_r = Residual Drift
- % DM = Fraction of Design Motion
- PGA = Peak Ground Acceleration
- SF = Scale Factor
- T_{cr} = Cracked Period
- T_n = Natural Period
- V/D_{max} = Base Shear at D_{max}
- μ_d = Displacement Ductility
Observations

Rebar Hinge

Pipe Pin

Design Level

After Failure
Measured Strains

<table>
<thead>
<tr>
<th>Component</th>
<th>Element</th>
<th>DM [με]</th>
<th>Max [με]</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebar Hinge</td>
<td>Long. Bars</td>
<td>26,667</td>
<td>46,127</td>
<td>Hinge Gap Center</td>
</tr>
<tr>
<td></td>
<td>Spiral</td>
<td>269</td>
<td>4,728</td>
<td>-</td>
</tr>
<tr>
<td>Pipe Pin</td>
<td>Pipe Long. Fiber</td>
<td>7,390</td>
<td>21,339</td>
<td>1” above Cap Beam</td>
</tr>
<tr>
<td></td>
<td>Pipe Trans. Fiber</td>
<td>1,394</td>
<td>4,018</td>
<td>Hinge Gap Center</td>
</tr>
<tr>
<td>Cap Beam</td>
<td>Longitudinal Bars</td>
<td>1,119</td>
<td>1,609</td>
<td>PP-Col Pocket Area</td>
</tr>
<tr>
<td></td>
<td>Ties</td>
<td>150</td>
<td>262</td>
<td>Edge of PP-Col Pocket</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>Pipe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield Strain [με]</td>
<td>2,578</td>
<td>2,283</td>
<td>2,749</td>
<td>3,155</td>
</tr>
</tbody>
</table>
Conclusions

- The pier model showed a displacement ductility capacity was 10.9 at 12% drift indicating **very successful overall performance**!
- One-piece pipe pin detail was successful. No damage was observed up to the end of testing.
- One piece pipe pins are suggested as alternative for rebar hinges due to improved seismic performance and ease of construction.
- Precast ap Beam remained elastic and damage free.
- Pocket connection was a successful detailing in hinging the columns outside the connection region.
Thank You

a.mehrsoroush@nevada.unr.edu