ONTOLOGY-BASED ENVIRONMENT FOR EARTHQUAKE ANALYSIS AND DESIGN

DR. SATWANT RIHAL, P.E., PROFESSOR EMERITUS, ARCHITECTURAL ENGINEERING
DR. HISHAM ASSAL, LECTURER, COMPUTER SCIENCE
CAL POLY STATE UNIVERSITY, SAN LUIS OBISPO, CA
The Problem

- Scattered earthquake data sources
- Multiple earthquake data types
- Multiple user types
- Need to access multiple data sources & types
- No single point of access to all data
Damage Example

Severe Damage Suffered by Church in Oaxaca during the M 7.1 Puebla, Mexico Earthquake of September 19, 2017
Earthquake Data Sources and Data Types

Organizations (Data Sources)

- USGS
- FEMA
- NIST
- EERI
- CREED Center
- Purdue Univ.
- NICEE
- India
- EPICENTER
- UCL/EEFIT
- UK
- UNISDR
- UNESCO
- GEM
- UNITAR
- WORLD BANK

Data Types

- EQ Ground Motions/Shaking Intensity Maps/PAGER Data
- Heritage Inventory and Management System, ARCHES etc.
- Observed Earthquake Damage Image Data/Maps
- Survey and Reconnaissance Data/Remote Sensing/GIS etc. Losses
- Post Earthquake Damage/Needs Assessment PDNA
- Disaster Risk, Vulnerability, Risk Assessment, Resilience, Economic Losses Lessons/ and Guidelines

Earthquake Events

- 2010 Haiti Earthquake
- 2010 Chile Earthquake
- 2015 Nepal Earthquake
- 2016 Philippines Earthquake
Role of Technology

- Remote Sensing / Satellites Imagery/ Aerial photography / Photogrammetry / GIS/ Drones – capture earthquake damage data
- Database systems track and save damage data
- Web-based systems offer access and sharing of data
- Ontologies offer a common representation of knowledge and reasoning capabilities
- Intelligent Agents provide mechanisms to analyze data and provide insights
Approach

➤ Integration of Earthquake data sources
 ◦ Data extraction layer
 ◦ Tools for cleansing, validation & cataloging

➤ Earthquake information model (Ontology)
 ◦ Multiple perspectives
 ◦ Tools for intelligent analysis (Agents)

➤ Data access layer
 ◦ Transparent access to all data
 ◦ Multiple scenarios and configurations

➤ Service-oriented architecture
 ◦ Web-based access
System Architecture

- Identification and Integration of data sources
- Unified model of building information and risk information
- Intelligent analysis tools
- Access to the unified model
- Data Consumers

Data Sources → USGS → EERI → NIST → CREED → GEM → UNITAR → Data Extraction Layer

Integrated Data/Information Model Layer

Intelligent Analysis Tools (Agents)

Data Access Layer

Scenario

Data Consumer 1 → Data Consumer 2 → Data Consumer 3 → Data Consumer 4
System Users

- Researchers
- Planners, Building Officials, Policy Makers
- Government Agencies and Organizations
- Integrated Data Sources
- Designers: Architects, Engineers
- Private Companies, Contractors
- Insurance Companies
Benefits

- Single point of access to many earthquake-related data sources
- Integrated data provide context for better interpretation
- Unified model (ontology) provides a medium for intelligent analysis
- Data access tools for validation, cleansing, scenario development.
- Bigger Picture, Lessons for mitigation against future events, guidelines for repair & retrofit
Conclusion

- Need for integrated data access
- Need for easier view of relevant information
- Proposed system brings together research and practice
- Tools for continuous update and data collection
- Intelligent analysis tools (reasoning)
- Extraction of lessons learned from Knowledge Base of Observed damage and experimental results.
Thank You – Please Come see my Poster!

Today Poster Session:

- **Time**: 5:15 – 7:00 pm
- **Room**: Pasadena (Exhibit Hall)
- **Poster location**: Number 095
- **Contacts**: srihal@calpoly.edu, hhassal@calpoly.edu