Seismic Performance Assessment of HSR Bridges through Structural Simulation and Testing

Mohammad Salehi, M.S., Ph.D. Student
Petros Sideris, Ph.D., Assistant Professor
Abbie B. Liel, Ph.D., Associate Professor (CU-Boulder)
INTRODUCTION

• Hybrid Sliding-Rocking Bridge Columns:
 • *Precast concrete* segments
 • Unbonded *post-tensioning* tendons
 • End *rocking* joints
 • Intermediate *sliding* joints

• Proof of Concept:
 • Past large-scale shake table and quasi-static tests

• Remaining Questions:
 • Computational modeling?
 • Optimal design?
 • Behavior under various load conditions?
COMPUTATIONAL MODELING

• HSR Element Formulation:
 • Representing HSR joints and their close vicinity
 • Capable of capturing the segments’ sliding-rocking interactions
 • Implemented in OpenSees and validated against test data

\[\text{Gradient-inelastic beam with rocking at joint} \quad + \quad \text{Hysteretic friction model} \]

\[\text{No-tension} \quad \text{Sliding joint} \]
EFFECTS OF DESIGN VARIABLES

• HSR Column Specific Design Variables:
 • Sliding joint distribution
 • Coefficient of friction
 • Sliding amplitude
 • Duct adaptor height
 • Post-tensioning

• Sample Results:
 ↓ Coefficient of friction = ↓ Strains
 ↑ Sliding amplitude = ↓ Strains
Effects of Ground-Motion Characteristics

- Effects of Ground-Motion Type:

- Effects of Vertical Excitation:
EXPERIMENTAL STUDY

- **Test Specimens:**
 - Four identical columns tested under static & dynamic loading

- **Test Setups:**

 ![Diagram showing test setups](image)
Would Like to Know More?

• Come to today’s poster session:
 • Time: 5:15 - 7:00 pm
 • Room: Pasadena (Exhibit Hall)
 • Poster location: No. 003