IDENTIFYING CRITICAL LOCATIONS FOR CONNECTION DUCTILITY IN STEEL MOMENT RESISTING FRAMES

Paul Steneke
PhD Candidate

Lydell Wiebe
Assistant Professor

Andre Filiatrault
Professor

McMaster University

University at Buffalo
The State University of New York

IUSS
Soros Universitaet der Seupers Pavia

11NCEE
LA2018

Graphs showing the relationship between beam rotation and number of stories for different levels of seismic demand (1.0, 1.5, 2.0 x MCE). The graphs indicate critical and non-critical locations for connection ductility.
Results of post-Northridge investigations

- **Pre-Qualified Connections:**
 - Fractures observed in MRF connection welds
 - New prequalified connections avoid weld fracture

Bruneau, Uang et al (2011) *Ductile Design of Steel Structures*
Results of post-Northridge investigations

- fractured connections grouped at floor levels
- current practice assigns single ductile capacity to all connections
- limits ability to concentrate resources at locations with highest demand

Previous research: some connections are more critical than others

How can we find the connections that are critical to the collapse capacity?
Prototype structure

- Seattle, Site Class B
- designed by Tsai and Popov (1988)
- revised for SAC (1995)
How were the plastic hinge models calibrated?

- test results from RBS connections using Lignos database (2013)
- used MATLAB multivariable optimization calibration software

Test data from Popov et al, 1998. Post-Northridge Earthquake Seismic Steel Moment Connections
Collapse analysis method

- multiple stripe analysis: 7 intensities x 40 ground motions
- scaled using the conditional mean spectrum
Locations of largest beam rotations

- median of maximum total beam rotation at intensity each stripe
Pushover Analyses

- six lateral force distribution considered

Triangular

- Graph showing base shear (kN) vs. roof drift (%)

Classical Modal

- Graph showing base shear (kN) vs. roof drift (%)

Force Adaptive Pushover

- Graph showing base shear (kN) vs. roof drift (%)

Equivalent Lateral Force

- Graph showing base shear (kN) vs. roof drift (%)

Modified Modal

- Graph showing base shear (kN) vs. roof drift (%)

Displacement Adaptive Pushover

- Graph showing base shear (kN) vs. roof drift (%)
Locations of largest beam rotations

- All distributions underestimated rotations at top floors
- All distributions overemphasized first floor rotations relative to upper floors
Locations of largest beam rotations

- Highest correlation with Triangular and E.L.F. distributions

- Lowest correlation with Force and Displacement adaptive distributions

- No distribution would suggest floors 1-4 are all critical
Calibrated Pushover Forces

- New lateral force distribution calibrated to match median maximum beam rotation profile at 1.5xMCE
- α values found to replicate forces as sum of all lateral modes

\[
(F_{\text{calib}})_j = \sum_{n=1}^{M_{\text{modes}}} \alpha_n \Gamma_n m_j \phi_{n,j} A_n(T_n)
\]

<table>
<thead>
<tr>
<th>Mode</th>
<th>α_n</th>
<th>$r_n \alpha_n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.44</td>
<td>37.80</td>
</tr>
<tr>
<td>2</td>
<td>0.35</td>
<td>3.60</td>
</tr>
<tr>
<td>3</td>
<td>0.62</td>
<td>1.77</td>
</tr>
<tr>
<td>4</td>
<td>-0.06</td>
<td>-0.05</td>
</tr>
<tr>
<td>5</td>
<td>1.18</td>
<td>0.49</td>
</tr>
<tr>
<td>6</td>
<td>-2.07</td>
<td>-0.38</td>
</tr>
</tbody>
</table>
Conclusions

- no considered pushover methods can identify critical connections
- applications: retrofit, inspection, design
- current work: other configurations, heights, designs
- current work: selective use of high-performance connections
IDENTIFYING CRITICAL LOCATIONS FOR CONNECTION DUCTILITY IN STEEL MOMENT RESISTING FRAMES

Paul Steneker
PhD Candidate

Lydell Wiebe
Assistant Professor

Andre Filiatrault
Professor

McMaster University

University at Buffalo
The State University of New York

IUSS
Soros Universitària Superiori Paolo

11NCEE
LA2018
How can panel zones be modelled?

- **Rigid Offsets**
- **Scissor Links**
- **Rotational Spring Box**

How did we model beams?

Bilinear

Trilinear

hinge defined with moment-rotation relation

IMK (Ibarra-Medina-Krawinkler)