Pattern Recognition Approach to Assess the Residual Structural Capacity of Damaged Tall Buildings

Y. Zhang¹, H. Burton Ph.D., S.E.² and J. Wallace Ph.D., P.E.³

¹Ph.D. Candidate, Dept. of Civil and Environmental Engineering, University of California, Los Angeles
²Assistant Professor, Dept. of Civil and Environmental Engineering, University of California, Los Angeles
³Professor, Dept. of Civil and Environmental Engineering, University of California, Los Angeles

Tuesday, June 26 – Friday, June 29
Background and Motivation

• Framework motivated by need for models to support timely decisions about whether earthquake-damaged tall buildings are safe to reoccupy.

• Post-earthquake safety assessments are informed relationship between measured responses (or observed damage) and residual structural capacity.

• Tall building responses consist of a high dimensional feature space of global and local engineering demand parameters (EDPs), but it is impractical to obtain and use all EDPs (e.g. through inspection or remote sensing).
Framework Overview

- **Goal:** Develop a predictive model that takes in a subset of tall building responses (or observed damage) and provides a quantitative assessment of the residual structural capacity.
- **Criteria:** Peak story drift ratio (PSDR) corresponding to the collapse prevention (CP) limit state (0.045 per TBI and LATBSDC) is used as the performance criteria.
- **Measure:** Residual structural capacity quantified by $\kappa = \frac{\hat{S}_{a_{CP,DMG}}}{\hat{S}_{a_{CP,INT}}}$
- **Response patterns used as predictors:**
 - Peak story drift ratios (PSDR)
 - Residual story drift ratios (RSDR)
 - Frame beam rotations (FBR)
 - Concrete compressive strain (CCS)
 - Rebar tensile strain (RTS)
 - Coupling beam rotations (CBR)
NLRHA under Mainshocks

Dispersion-Based Filter

Median $\hat{S}_{\alpha_{CP,INT}}$ of Intact Structure

Median $\hat{S}_{\alpha_{CP,DMG}}$ of Damaged Structure

Support Vector Machine

Instrument/Inspection Data

Predictive Models

Predicted Residual Structural Capacity Index κ_{CP}

Path A

Path B

Path C

Path D
Description of Building Case
Apply Dispersion-Filtering to Features

- Raw dataset consists of 272 observations for the damaged tall building corresponding to 34 mainshock ground motions scaled to 8 different intensity levels.

- Each observation includes 84 PSDRs and RSDRs, 672 FBRs and FCRs, 252 CBRs and 420 WCSs and RTSs.

- Feature space dimension (2604) much larger than number of observations (272).
Apply Dispersion-Filtering to Features

- **Filtering** is done to avoid (1) multicollinearity and (2) very small response demands.
- **Dispersion** in structural responses increases with the demand level and extent of inelastic response.
LASSO-Based Feature Selection

LASSO uses penalized OLS Loss Function:

$$J(w, \lambda) = \sum_{i=1}^{N} L(y_i, \hat{y}_i) + \lambda \|w\|_1$$
Profile of Feature Dispersions

Two sets of filtered features defined: selected and reserved
Profile of Feature Dispersions
Profile of Feature Dispersions
Support Vector Machines (SVM)
Performance of SVM Model Constructed using only Selected CBRs as Predictor
Overall Performance of SVM Model

<table>
<thead>
<tr>
<th>EDP</th>
<th>RMSE</th>
<th>Number of Features</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Training</td>
<td>Testing</td>
<td>Raw</td>
<td>Filtered</td>
<td>Post-LASSO</td>
</tr>
<tr>
<td>PSDR</td>
<td>0.15</td>
<td>0.22</td>
<td>84</td>
<td>84</td>
<td>11</td>
</tr>
<tr>
<td>RSDR</td>
<td>0.15</td>
<td>0.25</td>
<td>84</td>
<td>84</td>
<td>13</td>
</tr>
<tr>
<td>FBR</td>
<td>0.13</td>
<td>0.26</td>
<td>672</td>
<td>412</td>
<td>38</td>
</tr>
<tr>
<td>FCR</td>
<td>0.29</td>
<td>0.30</td>
<td>672</td>
<td>241</td>
<td>0</td>
</tr>
<tr>
<td>CBR</td>
<td>0.14</td>
<td>0.23</td>
<td>252</td>
<td>252</td>
<td>19</td>
</tr>
<tr>
<td>WCS</td>
<td>0.29</td>
<td>0.30</td>
<td>420</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>RTS</td>
<td>0.16</td>
<td>0.19</td>
<td>420</td>
<td>307</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EDP</th>
<th>σ</th>
<th>C</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Selected Features</td>
<td>Reserved Features</td>
<td>Percentage Difference</td>
</tr>
<tr>
<td></td>
<td>Training</td>
<td>Testing</td>
<td>Training</td>
</tr>
<tr>
<td>PSDR</td>
<td>0.02</td>
<td>8.0</td>
<td>0.15</td>
</tr>
<tr>
<td>RSDR</td>
<td>0.02</td>
<td>1.0</td>
<td>0.12</td>
</tr>
<tr>
<td>FBR</td>
<td>0.01</td>
<td>1.0</td>
<td>0.14</td>
</tr>
<tr>
<td>CBR</td>
<td>0.06</td>
<td>4.0</td>
<td>0.13</td>
</tr>
<tr>
<td>RTS</td>
<td>0.01</td>
<td>0.5</td>
<td>0.16</td>
</tr>
<tr>
<td>All</td>
<td>0.01</td>
<td>1.0</td>
<td>0.11</td>
</tr>
</tbody>
</table>

1 Reserved features not used for PSDR and RSDR
Example Application: Hypothetical Earthquake Sequence

- **Hypothetical sequence:** mainshock followed by four aftershocks occurring on 2\(^{nd}\), 4\(^{th}\), 12\(^{th}\) and 26\(^{th}\) day after the first event.
- **Key outcomes:** (1) reduction in structural capacity after each event and (2) time-dependent fragility curves.
Acknowledgements

National Science Foundation, CMMI Grant # 1538747.