Evaluation of Nonlinear Modeling Parameters for Reinforced Concrete Slab-Column Connections

Yan Zhou
Mary Beth D. Hueste
Zachry Department of Civil Engineering
Texas A&M University
College Station, TX, USA
Tuesday, June 26
Experimental Database and Backbone Response

Force-deformation curve types (adapted from ASCE 41-13)

Notes:
1. Only secondary component actions permitted between points 2 and 4;
2. The force, Q, after point 3 diminishes to approximately zero.

Updated Database
83 reinforced concrete (RC) slab-column (SC) connection specimens
- 69 specimens with bottom slab bars passing through support
- 14 specimens without bottom slab bars passing through support

Example Type 1 backbone response (Choi et al. 2007)

Pt. 1: Yield point
Pt. 2: Significant strength degradation begins
Pt. 3: Loss of seismic-force-resisting capacity
Pt. 4: Loss of gravity-load-resisting capacity
Total Drift Ratio to Point 2 (DR_2)

Specimens with continuity reinforcement

- **ACI 318-14**
- **ASCE 41-13**
- **Mean**
- **Proposed**

69 specimens

With continuity bars: proposed DR_2 values are approximate mean values

Specimens without continuity reinforcement

- **ACI 318-14**
- **ASCE 41-13**
- **Proposed**

14 specimens

Without continuity bars: limited data, proposed DR_2 values are mean minus one standard deviation for data with continuity reinforcement
Total Drift Ratio to Point 3 (DR_3)

Specimens with continuity reinforcement

- $DR_3 > DR_2$
- ACI 318-14
- ASCE 41-13
- Proposed

25 specimens

Specimens without continuity reinforcement

- $DR_3 > DR_2$
- ACI 318-14
- ASCE 41-13
- Proposed

3 specimens

With continuity bars: proposed DR_3 values are approximate mean values

Without continuity bars: very limited data, proposed $DR_3 = $ proposed DR_2
Proposed Nonlinear Modeling Parameter a

Generalized force-deformation relation (adapted from ASCE 41-13)

$$\frac{Q}{Q_y}$$

\[a = DR_a = DR_2 - DR_y \]
\[b = DR_b = DR_3 - DR_y \]

a and b are highly dependent on the definition of the yield drift

With continuity bars: proposed a values are approximate mean values

Without continuity bars: proposed a values are mean minus one standard deviation for data with continuity reinf.

The proposed parameters are slightly lower than the ASCE 41-13 values.
Proposed Nonlinear Modeling Parameter b

Generalized force-deformation relation (adapted from ASCE 41-13)

$$\frac{Q}{Q_y} = \frac{1}{1 - DR}$$

$a = DR_a = DR_2 - DR_y$

$b = DR_b = DR_3 - DR_y$

a and b are highly dependent on the definition of the yield drift.

Specimens with continuity reinf.

With continuity bars: proposed b values are approximate mean values.

Specimens without continuity reinf.

Without continuity bars: very limited data, proposed $b = $ proposed a

The proposed parameters are slightly lower than the ASCE 41-13 values.
Today’s Poster Session:

– **Time**: 5:15 – 7:00 pm

– **Room**: Pasadena (Exhibit Hall)

– **Poster location**: **Number 037**