High-frequency Simulations: Verification and Validation of the M5.1 La Habra, CA, earthquake

R. Taborda,1,2 K. B. Olsen,3 R. W. Graves,4 F. Silva,5 N. Khoshnevis,2 W. Savran,3 D. Roten,3 Z. Shi,3 C. A. Goulet,5 J. Bielak,6 P. J. Maechling,5 Y. Cui7 and T. H. Jordan5,8

1 Dept. of Civil Engineering, University of Memphis, Memphis, TN 38152
2 Center for Earthquake Research and Information, University of Memphis, Memphis, TN 38152.
3 Dept. of Geological Sciences, San Diego State University, San Diego, CA 92182.
5 Southern California Earthquake Center, University of Southern California, Los Angeles, CA 90089.
6 Dept. of Civil and Environmental Engineering, Carnegie Mellon, Pittsburgh, PA 15213.
7 San Diego Supercomputing Center, University of California, San Diego, La Jolla, CA 92093.
8 Dept. of Earth Sciences, University of Southern California, Los Angeles, CA 90089.
Verification

» Correctness of the implementation of a simulation scheme

» Comparison of simulations with exact or alternative solutions

Validation

» Level of agreement between synthetics and actual data

» Comparison of simulations with observations
SCEC High-F simulation codes and collaboration history

Finite Difference Method

- AWP-ODC
- AWP-RWG

Finite Element Method

- Hercules

2005–2006 **TeraShake**

- 0.5–1 Hz
- 500 m/s

2007–2008 **ShakeOut**

- Simulation, verification
- 0.5–1 Hz
- 500 m/s

2009–2018 **Chino Hills & La Habra**

- Simulation, validation, verification
- 2–4 Hz
- 200 m/s
The 2014 Mw 5.1 La Habra earthquake

- 3 codes
- $f_{\text{max}} = 4 \text{ Hz}$
- $V_{s\text{min}} = 500 \text{ m/s}$
- 300+ observations
Source models considered

Point source model

Finite fault model
Velocity models considered

Half-space model
- $V_s = 1$ km/s
- $V_p = 2$ km/s
- Density = 2.1 g/cm3

1D layered model (BBP)
- $V_{s_{\text{min}}} = 0.5$ km/s

3D crustal structure (CVM-S4.26.M01)
- $V_{s_{\text{min}}} = 0.5$ km/s
Initial verification – Point source – 1D elastic

FUL 040°

Initial – 2 codes

2 months later – 2 codes

4 months later – 3 codes

6 months later – 3 codes
Initial verification – Point source – 1D elastic vs 1D anelastic

FUL 040°

Initial – elastic vs 2 months later – anelastic
Initial verification – Point source – 3D anelastic

FUL 040°

Initial – 2 codes

2 months later – 2 codes

4 months later – 3 codes

6 months later – 3 codes
Initial verification – Point source – 3D anelastic (cont.)

FUL 040°

8 months later – 3 codes

10 months later – 3 codes

12 months later – 3 codes
Latest results – Finite fault – 3D anelastic
Validation
Quantitative comparisons and goodness-of-Fit (GOF) methods

» Signal metrics
 › Anderson (2004)
Preliminary results – 2 codes – Point source – $f_{\text{max}} = 4$ Hz
Final remarks

» It takes time
» It requires careful attention to detail (interpretation of “standards”)
» It is preferable to have an independent party for (automated) comparisons
» Never underestimate the most basic level of modeling
High-frequency Simulations:
Verification and Validation of the M5.1 La Habra, CA, earthquake

R. Taborda,1,2 K. B. Olsen,3 R. W. Graves,4 F. Silva,5 N. Khoshnevis,2 W. Savran,3 D. Roten,3 Z. Shi,3 **C. A. Goulet,**5 J. Bielak,6 P. J. Maechling,5 Y. Cui7 and T. H. Jordan5,8

1 Dept. of Civil Engineering, University of Memphis, Memphis, TN 38152
2 Center for Earthquake Research and Information, University of Memphis, Memphis, TN 38152.
3 Dept. of Geological Sciences, San Diego State University, San Diego, CA 92182.
5 Southern California Earthquake Center, University of Southern California, Los Angeles, CA 90089.
6 Dept. of Civil and Environmental Engineering, Carnegie Mellon, Pittsburgh, PA 15213.
7 San Diego Supercomputing Center, University of California, San Diego, La Jolla, CA 92093.
8 Dept. of Earth Sciences, University of Southern California, Los Angeles, CA 90089.